Paper ID #41646Board 210: Bringing Engineering Ethics Education into the High SchoolCurriculumDr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is a professor in the Department of Engineering Technology and Industrial Distribution (ETID) at Texas A&M University. He also serves as interim associate provost for faculty success and interim associate vice president for faculty affairs. He briefly served as the acting department head of ETID. Prior to joining the Provost’s team, Dr. Johnson was associate dean for inclusion and faculty success in the College of Engineering. Before joining the faculty at
Paper ID #41714Board 246: Early-Career Engineers’ Experiences with Equity and Ethics inthe WorkplaceChika Winnifred Agha, Colorado State University Chika Winnifred Agha is a graduate student in the Civil and Environmental Engineering department at Colorado State University, working towards her master’s degree. She holds a bachelor’s degree in Civil Engineering and has acquired expertise in both Civil Engineering and Engineering Education. This unique combination of knowledge has equipped her with a distinctive set of skills. Her research interests primarily revolve around engineering education, with a specific focus on
Paper ID #42535Board 399: The Affordances of Playful Learning in Ethics Education: Challengingthe Status QuoDr. Scott Streiner, University of Pittsburgh Scott Streiner is an Assistant Professor in the Industrial Engineering Department, teaches in the First-Year Engineering Program and works in the Engineering Education Research Center (EERC) in the Swanson School of Engineering at the University of Pittsburgh. Scott has received funding through NSF to conduct research on the impact of game-based learning on the development of first-year students’ ethical reasoning, as well as research on the development of
focuses on ethical and empathic formation in engineering education. He received his PhD from Purdue University’s School of Engineering Education, as well as a Master of Science and Bachelor of Science from Purdue University’s School of Civil Engineering. He is the editorial board chair for the Online Ethics Center, deputy director of research for the National Institute of Engineering Ethics, and past-division chair for the ASEE Liberal Education/Engineering and Society division.Sowmya Panuganti, Purdue Engineering Education Sowmya Panuganti is a graduate student at Purdue University in the Engineering Education department. She is passionate about understanding engineering culture and the effects it has on engineers’ mental
Paper ID #41558Board 285: First-Year Electrical and Computer Engineering UndergraduatePerformance at Identifying Ethical Concerns in IEEE Case StudiesDr. Todd Freeborn, The University of Alabama Todd Freeborn, PhD, is an associate professor with the Department of Electrical and Computer Engineering at The University of Alabama. Through NSF funding, he has coordinated REU Sites for engineering students to explore renewable resources and speech pathology. He is also the coordinator for an NSF S-STEM program to prepare students for gateway courses across different disciplines of engineering to support and retain students in
Paper ID #43353Board 371: Research Initiation: Expanding the Boundaries of Ethical Reasoningand Professional Responsibility in Engineering Education Through CriticalNarrativeDr. Jeff R. Brown, Embry-Riddle Aeronautical University, Daytona Beach Jeff Brown is a professor of civil engineering at Embry-Riddle Aeronautical University in Daytona Beach, FL. His research interests include ethics and professional formation in engineering education, service learning, and structural health monitoring of reinforced concrete structures. Dr. Brown received his PhD in structural engineering from the University of Florida in 2005.Taylor Joy
Michigan studying Engineering Education Research under doctoral advisor Aaron Johnson. Her research focuses on weaving macro ethics into existing aerospace engineering curricula and institutional support methods for working class engineering students. Elizabeth earned her undergraduate degree from the University of Michigan in 2019 with foci in Biomedical Engineering and Applied Mathematics.Sabrina Olson, University of MichiganRicardo Elias, California State University, Los Angeles ©American Society for Engineering Education, 2024 Developing Critically-Conscious Aerospace Engineers through Macroethics Curricula: Year 1IntroductionAbsent from the undergraduate aerospace
in ResearcherReflexivity, Adhering to Research Ethics, Framing the Research Problem and Questions,Identifying a Critical Framework, Conducting the Literature Review, Choosing ResearchMethods, Engaging with Participants, Crafting Instrumentation and Collecting Data, Analyzingand Interpreting Data, and Reporting on Research.After analyzing 12 standards bodies from seven countries and several dozen research articles[12–23], the working group created guidelines for each of the major areas. For example, Figure 2shows the resultant critical framework guidelines resulting from the analysis.4 ReflectionThrough our analysis, the working group merged valuable standards offering insights, guidance,and concrete examples for conducting education research
should be taught when viewing through the lensof teaching CS to high school students in the year 2030 and what content should be prioritized.Our analysis sought to delineate and synthesize their sentiments. Six major priorities emergedfrom our analysis: societal impacts and ethical issues, algorithmic thinking, data and analysis,inclusive computing culture, AI, and career knowledge. The significance of our findings is thatthey present a broad overview of what a variety of relevant parties consider to be the mostimportant CS content for high school students; this information is important for educators,administrators, and those who develop curriculum, standards, and/or teaching tools.1 Introduction and BackgroundThe field of computer science (CS
the follow-up question, why do engineers solve problems?is not as frequently communicated. Engineers solve problems for the benefit of society. Evidencefor this role is seen within the National Society of Professional Engineer’s code of ethicscannons and rules of practice, the first of which is “Engineers shall hold paramount the safety,health, and welfare of the public [1].” While not every engineer will be providing individualizedproblem solutions, i.e. care, the discipline of engineering is intended to provide solutions andcare to society. Engineers are societal caregivers. The problems engineers are called on to solve, are complex, not just from anintellectually rigorous perspective, but also from the myriad of societal, ethical
benefit of and meaning behind research is first clearly communicatedand emphasized to researchers as they conduct their work. According to the NSF, broader impacts are the “potential (for your research) to benefitsociety and contribute to the achievement of desired society outcomes,”. Some examples ofsocietal outcomes include public engagement, education, inclusion, societal wellbeing, nationalsecurity, strengthened infrastructure, and economic competitiveness, among others. The Ethical,Legal, & Societal Implications (ELSI), of an engineering research project refers to the analysis ofthe societal implications of novel and emerging research and associated or resultingtechnological advancements (Ogbogu & Ahmed, 2022). Engineering
designed to foster a more inclusive and socially consciousengineering identity, highlighting the importance of ethical considerations in engineeringpractices. This integration is crucial for preparing future engineers to address complex real-worldproblems that span beyond technical solutions.The existing computing course (Introduction to Computing for Engineering, typically taken bymost engineering students in the spring semester of their first-year) historically was focused onteaching the technical concepts of coding and an introduction to data science (data manipulation,visualization, and interpretation). The experimental redesign of the course involves incorporatingjustice-based activities that encourage students to analyze ethically complex
command for complaints. Students also are informed about resources and agencies affiliated with LSU who are available to support them should they face an academic dilemma.Career Development WorkshopsThe career development workshops were professional development oriented including fourworkshops based on the National Association of Colleges and Employers (NACE) competencies,and practical resume writing, and an ethics workshop. Each workshop was assessed for learningoutcomes and perceived value.Teamwork and Communications WorkshopThe teamwork and communication workshop teaches basic skills of workplace teamwork andcommunication aligned to the NACE competencies. Information in the workshop includedstages of team development, writing
Paper ID #42754Board 360: Reflections from Graduates on the Impact of Engineers WithoutBorders USA Experiences on Professional PreparationLazlo Stepback, Purdue University, West Lafayette Lazlo Stepback is a PhD student in Engineering Education at Purdue University. His current research interests focus on engineering ethics, the connections between personal morals and professional ethics, and how students ethically develop as engineers. He earned a B.S. in Chemical and Biochemical Engineering at the Colorado School of Mines (Golden, CO) in 2020.Paul A. Leidig P.E., Purdue University, West Lafayette Paul A. Leidig works in
groupdiscussions, Mentimeter online surveys to collect immediate feedback from the whole group, andnetworking breaks. Lunch was provided on both days and dinner was provided on Day 1.Day 1 was dedicated to understanding perspectives from stakeholders regarding electricityaccess and sustainable business. Keynote speakers Mou Riiny, CEO of SunGate Solar in SouthSudan and Dr. June Lukuyu, Assistant Professor of Electrical and Computer Engineering at theUniversity of Washington shared insights on the challenges of working in South Sudan andUganda. Themed discussions focused on enhancing the classroom experience and sustainable,ethical, and beneficial projects as well as a student panel. Table 2 shows the schedule for Day 1:Table 2: Day 1 Schedule Day 1
. Her research interests include empathy, design education, ethics education and community engagement in engineering. She currently teaches Cornerstone of Engineering, a first-year two-semester course series that integrates computer programming, computer aided design, ethics and the engineering design process within a project based learning environment. She was previously an engineering education postdoctoral fellow at Wake Forest University supporting curriculum development around ethics/character education. ©American Society for Engineering Education, 2024 Student Engagement – IoT-Based Learning Materials and ProjectsAbstractEven with a return to in-person learning by many institutions
students - Frequent meeting and working in research labs Improve ethical reasoning and - Attend and actively participate - REU evaluations and surveys social awareness of all student in engineering ethics seminars - Feedback from seminar host. participants Table 5: Summary of Site objectives, activities, and data collection for Cancer Innovation REUdata using appropriate statistical methods, write a report including the findings from the data analysis, andshare it with the stakeholder. In addition, the report also includes relevant recommendations to improve theeffectiveness of the program. The report also addresses6 out of the 10 undergraduate students
workplace.” Participants emphasized specific examples of improvements, such as theircommunication with managers, understanding of job duties, team collaboration, problem-solving, and work ethic. Practical applications of engineering in their courses helped them totranslate theoretical knowledge into employment opportunities. As stated by one participant, “Ifeel like I was one of the few people in my internship … that was actually able to take myresearch in my own direction.” Additionally, participants expressed that the program heightenedstudents’ confidence in exploring career opportunities in engineering and engineeringtechnology. They identified examples of how the skills students develop in the engineeringprogram contributed to their efforts in
. Listening to “happy” music [5] may alsoimprove mood and lead to an increase in cooperative behavior.In the capstone design course that is the subject of this paper, working out the team dynamics is aone-time activity. However, studies of team function over time show that – as expected – teameffectiveness may vary over the duration of a long project. While capstone design is far lessintense than long duration space missions (although students may claim otherwise), studies of theperformance over time of teams operating in extreme situations has shown that crews’ abilities tothink divergently and make choices as a group decreased over time, while ethical decisionmaking and ability to execute tasks stayed relatively constant and increased, respectively
lead to the development of a degree program in AI. The project seeks toenhance Hispanic-Serving community college (HSCC) capacity to interest and train students inAI. This four-year project is a collaboration between a CC, a university, a non-profitorganization, industry partners, evaluators, and social scientists to understand how to expandHSCC computing pathways.2. Program Details The main objectives for the project include developing and implementing aninterdisciplinary AI certificate at the HSCC and, subsequently, creating courses that could beincorporated into a four-year degree at the HSCC. The interdisciplinary AI HSCC Certificate hasfour courses: AI Thinking, Applied AI in Business, AI & Ethics, and Machine
Transformational Resistance (Solórzano and Bernal,2001) • Classes that taught social justice theory Data Data which are identified by a student either: Barriers to students' resistance, such as: • Worrying about ethics in working in marginalized high degree of influence on career expectations (Bandura, 1997): Analysis
self-efficacy. As a result, elementary teachersmight then be better equipped to build students’ engineering identity and encourage them toconsider engineering as a potential career option.In addition to helping students develop engineering identities, exposure to engineering inelementary school is also beneficial for developing students’ engineering habits of mind(EHoM). EHoM are internalized dispositions and ways of thinking that engineers draw uponwhen confronted with problems [4] and include things such as optimism, persistence,collaboration, creativity, systems thinking, and attention to ethical considerations [5]. TheseEHoM can be beneficial to all students, regardless of career choice, but as with all habits,EHoM take time to develop. As
experiences:Communications, Work Ethic, Individual Identity, Life Experience, and Adaptation. Thesethemes were selected from the collective insights of the faculty members who independentlyreviewed the combined dataset. This analysis highlights the multifaceted challenges and learningopportunities students encounter when navigating the complexities of global engineeringenvironments. These themes are further defined in Table 4. Table 4: GES qualitative coding themes Code Coding Theme Definition 1 Communications Response includes major themes around spoken language, non-verbal communications, judgment/perception, temperament, and/or forced/informal
norms and behaviors thatmarginalize underrepresented students, further exacerbating their sense of exclusion andalienation [4]. Engineering's “hidden curriculum” covers things like professional norms,confidence-building, and ethics, taught indirectly in early foundational courses, makingadaptation difficult for transfer students [5].Mentoring has been identified as a valuable strategy for decoding the hidden curriculum andsupporting students in navigating the implicit messages and norms present in educationalsettings [3], [4], [6]. Mentors can provide guidance, share their own experiences, and offerinsights into the hidden curriculum, thereby helping students to understand and navigate theunspoken rules and expectations of the academic
not sign the consent letter to participate in the IRB-approved evaluationresearch.Evaluation MethodsEvaluation of the project consisted of a pre-post survey instrument focused on perceived self-efficacy in universal teamwork and research skills. This instrument was an adaptation of theResearch Self-efficacy scale [9]. Questions focused on things like the perceived ability to“engage in effective team practices,” “follow ethical principles of research,” “identify my ownstrengths within a team setting,” and “present research ideas in oral or written form.” This pre-post survey was augmented by weekly surveys aimed at understanding fellow engagement in theprogram. A final focus group was held with the project evaluator to further elucidate the
Medsker is a Research Professor of Physics at The George Washington University (GWU) and at the University of Vermont. He is also a Research Affiliate at George Mason University’s Center for Assured Research and Engineering. He is a member of the GWU Human-Technology Collaboration Lab, and Founding Director of the university’s Master’s Program in Data Science. Larry specializes in areas of artificial intelligence, data science, computer science, neural computing, information systems, physics, and STEM education. He is the author of four books and over 200 publications on neural networks, AI, and physics. He serves as Co-Editor-in-Chief of AI and Ethics, Associate Editor of Neural Computing and Applications, and Policy
investigatorwithout formal engineering education training, it was important to ensure there was an adequateopportunity to engage in both short and longer duration workshops. Step 2 of the processoutlined training of research protocols, necessary to steps to facilitate ethical and scientificallysound education research. Steps 1 and 2 provide the foundation and preparation for Step 3:Research Initiation of the pilot project. The pilot research project would start to understand theproblem outlined in the introduction. Finally, by Step 4, the initiated research would become acatalyst for additional topics of engineering education research that examines fundamentalresearch questions related to broadening participation in graduate engineering programs
challenged the understanding of enculturation the most(along with ethics). Further analyses and follow-up studies are being designed to investigate thisresult [3, 4].In terms of the dissemination efforts taking place, the official website for this project waslaunched (https://ectd.engr.tamu.edu/), and the Office of Technology Transfer has approveddissemination to other institutions with the proper intellectual property acknowledgments.Additionally, a proposal for a workshop devoted to increasing researcher's knowledge of theECTD was approved for the ASEE 2024 conference. This workshop affords the opportunity torun another cycle of validation for this instrument that will ensure its relevance and applicabilityto even wider audiences.We are also at a
Paper ID #42172Board 407: The Use of Home Technology in Preschoolers’ Families in UrbanSettings: Experiences and Potential ImpactsDr. Gisele Ragusa, University of Southern California Gisele Ragusa is a Professor of Engineering Education at the University of Southern California. She conducts research on college transitions and retention of underrepresented students in engineering, PreK-12 STEM Education, ethics, socially assistive robotics, and also research about engineering global preparedness. ©American Society for Engineering Education, 2024 The Use of Home Technology in Preschoolers’ Families in
systems, components, or processes to meet practical or applied needs; (4)understanding computer hardware and systems; (5) working on a multidisciplinary team; and (6)making ethical decisions in engineering/research. These results are presented in Table 2 withstatistically significant results marked with a double asterisk (**).Table 2. Pre- and post-survey comparisons on knowledge/skills ratings (N = 10). Note: Eachitem was rated on a four-point scale (1 = no knowledge or skills; 2 = low knowledge or skills; 3= working knowledge or skills; 4 = advanced knowledge or skills). Item Pre-Test Pre-Test Post- Post- Z p Mean Range Test Test