students in authentic, ill-structured engineering tasks facilitates the development oftheir engineering skills.1-3To facilitate students’ authentic practice of these skills we have developed a learning systembased on virtual laboratories. In this learning system, student teams take on the role of processdevelopment engineers. They are tasked with finding suitable input parameters to be released tohigh volume manufacturing through experiments that are completed virtually. When studentsperform experiments, the lower cognitive demand affords them the opportunity to build a richexperimental design. While not instructed to do so, most student teams inevitably resort tomodeling as a tool to progress towards completion.Student team modeling practices are
to gain an in-depth, meaningful understanding of students’experiences. Data was analyzed from pre- and post-surveys and an exit interview to construct thecase study. A constant comparative method was used to develop conceptual themes thataddressed the research question. The community college students experienced self, perspective,support, knowledge, and relationship gains. This study concluded that the main reason for thegains were the multilevel support systems that was in place for them in the laboratories andreceived by their families throughout the duration of the program. Study implications are thatmore research universities should target community college students to apply to their REU.However, future studies are critical to develop
Paper ID #7506The Influence of Feedback on Teamwork and Professional Skills in an Au-thentic Process Development ProjectMs. Debra Gilbuena, Oregon State University Debra Gilbuena is a PhD Candidate in the School of Chemical, Biological, and Environmental Engi- neering at Oregon State University. She currently has research focused on student learning in virtual laboratories. Debra has an MBA, an MS, and 4 years of industrial experience including a position in sensor development, an area in which she holds a patent. Her dissertation is focused on the characteriza- tion and analysis of feedback in engineering education
pedagogical tool to teachfreshmen engineering students about electromagnetism. A quasi-experimental design was used tocompare students who used visual-only simulations to those who used visuohaptic. Wehypothesized that multimodal presentation of information may lead to better conceptualunderstanding of electromagnetism compared to visual presentation alone.A class of 77 electrical engineering technology students from six different laboratory sessionsparticipated in the study. Laboratory sessions were randomly divided into two groups: a controlgroup with only visual simulations and an experimental group with visual simulations plus hapticfeedback. Learning was assessed qualitatively and quantitatively.Overall results on the pretest and posttest
deflect when you push, pulland twist them in a single object. Experience suggests that students have substantialdifficulty with combined loadings, but it is unclear why this is true.Understanding how theories of conceptual change may fit student misconceptions inengineering disciplines is ultimately useful because it could inform teaching practices.For example, if what is proposed in this paper has validity then spending time withstudents on how objects move and change shape under a variety of loads may help dispelthe myth that stresses only act in the direction of applied loads.Acknowledgements This material is based upon work supported by the National Science FoundationCourse Curriculum and Laboratory Improvement Program under Grant
work with academic assessment, particularly relating to ABET. She can be reached at jmcferran@uaa.alaska.edu.Dr. Steffen Peuker, University of Alaska Anchorage Dr. Steffen Peuker is an Assistant Professor of Mechanical Engineering and the Director of the Thermal System Design Laboratory at the University of Alaska Anchorage. He is teaching the Thermal System De- sign, Thermal System Design Laboratory, HVAC Systems Optimization and Introduction to Engineering courses. His work in engineering education focuses on hands-on undergraduate engineering education in the HVAC&R area, student-industry cooperation, and developing innovative ways of merging engineering fundamentals and engineering in practice and research
California Institute of Technology, where he was an AT&T Bell Laboratories Ph.D. Scholar. Dr. Wood was formerly a Professor of Mechanical engineering at the University of Texas (1989-2011), where he established a computational and experimental laboratory for research in engineering design and manufac- Page 23.758.1 turing. He was a National Science Foundation Young Investigator, the Cullen Trust for Higher Education Endowed Professor in Engineering and University Distinguished Teaching Professor at The University of Texas at Austin. c American Society for Engineering Education, 2013
and power. He has received several patents and published over a hundred technical papers related to pulsed flow, combustion systems, and biological fluid flow. He established the Combustion & Propulsion Research Laboratory in Indianapolis and a pioneering Purdue University research program in wave rotor constant-volume combustion in collaboration with engine industry. He was twice awarded the Abraham Max Distinguished Professorship, as well as the Frank Burley Distinguished Professorship – the highest honors of the Purdue University School of Engineering and Technology for research and service accom- plishments, respectively. He has consulting experience related to injury and patent litigation, emissions
strategies and didacticcurriculums, integrated design technologies and developing technologies; to simulation, qualityin higher education, and distance learning; to information communication technology,assessment/accreditation, sustainable technology and project-based training; and to engineeringmanagement, women engineering careers, and undergraduate engineering research.Trends in Engineering EducationThe trends in engineering education have been reported over several periods of time by differentauthors. Meisen6 mentions that the global trends in engineering education in the 90s were agreater emphasis on experiential programs supported by industry work experience, decliningemphasis on laboratory instruction, internationalization of engineering
Paper ID #7553The Impact of Inclusive Excellence Programs on the Development of Engi-neering Identity among First-Year Underrepresented StudentsDr. Daniel Knight, University of Colorado, Boulder Daniel W. Knight is the engineering assessment specialist at the Integrated Teaching and Learning Pro- gram and Laboratory. He holds a BA in psychology from Louisiana State University, and an MS degree in industrial/organizational psychology and PhD degree in counseling psychology, both from the University of Tennessee. Prior to joining the University of Colorado at Boulder, he gained extensive experience in assessment and
section which deals with programming robots. Managed a laboratory, which allowed students Page 23.1261.1 to complete experiments. AT&T Broadband, Pittsburgh Penn., May 2000 to Dec. 2002, Head end Tech- nician, responsible for all aspects of high speed data, telephony and cable operations, hybrid fiber to coax transmissions, programming in Visual Basic, C++, Java scripting, and M.S. Office. Experience with systems such as Cheetah, Path Tracks, and Cornerstone. Access Bandwidth Technician, responsible for c American Society for Engineering Education, 2013
alternatives to prevalent educationalpractices. For example, a variety of educational approaches were presented in the plenarysession of the 2011 ASEE annual conference. Examples of some of the approaches presentedincluded active learning, formative assessment as a strategy to support learning, and problem-based learning. Each description of an approach included a summary of research-based evidenceon specific educational impacts. The National Science Foundation, which funds projects forimproving STEM education through its Course, Curriculum and Laboratory Improvement(CCLI) and Transforming Undergraduate Education in STEM (TUES) programs, has sponsoredforums in which panels of practitioners and scholars were commissioned to investigate the issueof