Paper ID #9937Leadership in Multidisciplinary Project Teams: Investigating the emergentnature of leadership in an engineering education contextMegan Kenny Feister, Purdue University Megan K. Feister is a doctoral candidate in the Brian Lamb School of Communication at Purdue Uni- versity. Her research focuses on organizational identity and socialization, team communication, ethical reasoning development and assessment, and innovation and design. Megan holds a B.A. in communica- tion from Saint Louis University and a M.A. in Organizational Communication from the University of Cincinnati.Dr. Carla B. Zoltowski, Purdue
, iswell aligned with the application of CTS to solve complex engineering problems.Despite this alignment the CLA does not offer a means for the development of CTS, nordoes it provide a suitable means for the sustainable assessment of CTS in a courseexperience.With this in mind, in order to provide a valid, authentic and sustainable means tosimultaneously develop and assess critical thinking within a course experience a realistic,contextually relevant, performance-based intervention, such as MEAs are ideal.4. Model Eliciting ActivitiesMEAs have been used in engineering education at the university level for the past decade10,11,34-36 . MEAs have shown promising results in developing students’ topical conceptualunderstanding, information
. Gardner, H., 1999. “Intelligence Reframed: Multiple Intelligences for the 21st Century.” New York: Basic Books.11. Joyce, B., and Weil, M., 2000, “Models of Teaching.” Boston: Allyn and Bacon.12. Brandford, J.D., et al., Eds., “How People Learn: Brain, Mind, Experience and School,” Expanded Edition, National Academy of Sciences, 2000.13. Klingbeil, N. and Bourne, T. 2013, “A National Model for Engineering Mathematics Education: Longitudinal Impact at Wright State University,” Proceedings 2013 ASEE Annual Conference & Exposition, Atlanta, GA, June 2013.14. Klingbeil, N. and Bourne, T., 2012, "The Wright State Model for Engineering Mathematics Education: A Longitudinal Study of Program Impacts," Proceedings 4th First Year
each student population.ReferencesAdelman, C. (1998), Females and Men of the Engineering Path. A Model for Analysts of Undergraduate Careers, U.S. Department of Education, Office of Educational Research and Improvement, Washington, D.C.; U.S. Government Printing Office.Bransford, J., A. Brown, and R. Cocking (Eds) (2000), How People Learn: Brain, Mind, Experience, and School: Expanded EditionBrown, S., L Flick, and T. Fiez (2009), “An Investigation of the Presence and Development of Social Capital in an Electrical Engineering Laboratory”, Journal of Engineering Education, 98(1). 93-102.Bordonaro, M., A. Borg, G. Campbell, B. Clewell, M. Duncan, J. Johnson, K. Johnson, R. Matthews, G. May, E. Mendoza, J. Sideman, S. Winters, and C
Paper ID #8550A Mixed Methods Analysis and Evaluation of the Mixed Methods ResearchLiterature in Engineering EducationDr. Rachel Louis Kajfez, Ohio State University Dr. Rachel Louis Kajfez is an Assistant Professor of Practice in the Engineering Education Innovation Center and the Department of Civil, Environmental, and Geodetic Engineering at The Ohio State Univer- sity. She earned her B.S. and M.S. degrees in Civil Engineering from Ohio State and earned her Ph.D. in Engineering Education from Virginia Tech. Her research interests focus on the intersection between motivation and identity of undergraduate and graduate
Paper ID #9695Faculty Perceptions of Student Engagement: A Qualitative InquiryMariaf´e Taev´ı Panizo, James Madison University Mariaf´e Panizo is a second year graduate student in JMU’s Graduate Psychology program. She has been working on engineering education research projects for one and a half years, focusing on non-cognitive factors that impact engineering student success. She is currently working on her M.A. thesis on Beliefs on Depression.Mr. John Hollander, James Madison UniversityDr. Jesse Pappas, James Madison UniversityDr. Olga Pierrakos, James Madison University OLGA PIERRAKOS is an associate professor and
Paper ID #8460Judging the Quality of Operationalization of Empirical-Analytical, Interpre-tive and Critical Science Paradigms in Engineering Education ResearchMs. Gurlovleen K. Rathore, Texas A&M University Gurlovleen Rathore is pursuing her Ph.D. in Interdisciplinary Engineering at Texas A&M University. Her research interests include problem-based learning, design creativity and innovation, design education and future faculty professional development. She received her B.S. in Engineering Physics from the University of Michigan and a M.S. in Mechanical Engineering from Texas A&M University
Paper ID #8823Incorporating Oral Presentations into Electrical and Computer EngineeringDesign Courses: A Four-Course StudyMs. Nabila A. Bousaba, University of North Carolina, Charlotte Nabila (Nan) BouSaba is a faculty associate with the Electrical and Computer Engineering Department at the University of North Carolina at Charlotte since 2008; she is the senior design instructor for the department, additional courses taught include Basic Circuit for non- majors, and Technology Innovation and Entrepreneurship course ECGR4090/5090. Nan Earned her BS and Master Degrees in Electrical Engineering (1982, 1986) from North
Paper ID #9048The PEER Collaborative: Supporting engineering education research facultywith near-peer mentoring unconference workshopsDr. Alice L Pawley, Purdue University, West Lafayette Alice L. Pawley is an associate professor in the School of Engineering Education with affiliations with the Women’s Studies Program and Division of Environmental and Ecological Engineering at Purdue University. She has a B.Eng. in chemical engineering (with distinction) from McGill University, and an M.S. and a Ph.D. in industrial and systems engineering with a Ph.D. minor in women’s studies from the University of Wisconsin-Madison. She
Paper ID #8754Effect of Flipping the Classroom on Student Performance in First Year Engi-neering CoursesDr. Kathleen A. Ossman, University of Cincinnati Dr. Kathleen Ossman is an Associate Professor in the School of Engineering Education in the College of Engineering and Applied Science at the University of Cincinnati. She teaches courses to freshmen engineering students that require the application of mathematics and physics to solving applied problems from a variety of engineering disciplines and utilize MATLAB for solving computationally intensive problems and analyzing data. She earned a BSEE and MSEE from Georgia Tech
Paper ID #8942An Experiential Learning Approach to Develop Leadership Competencies inEngineering and Technology StudentsDr. Gregg Morris Warnick, Brigham Young University Gregg M. Warnick is the Director of the Weidman Center for Global Leadership and Associate Teaching Professor of Engineering Leadership within the Ira A. Fulton College of Engineering and Technology at Brigham Young University (BYU). The center provides oversight for leadership development and inter- national activities within the college and he works actively with students, faculty and staff to promote and develop increased capabilities in global
Paper ID #9129Applying Self-authorship Theory among Chinese Engineering Doctoral Stu-dents in U.S. InstitutionsDr. Jiabin Zhu, Shanghai Jiao Tong University Jiabin Zhu, Ph.D., is an Assistant Professor at the Graduate School of Education in Shanghai Jiao Tong University, P. R. China. She obtained a B.S. in Physics from East China Normal University, a M.S. in Optics from Chinese Academy of Sciences, a second M.S. in Biomedical Engineering and a Ph.D. in Engineering Education from Purdue University. Her primary research interests relate to the development of engineering students’ professional skills, the assessment of
Paper ID #8891Biomedical Signal Processing: Designing an Engineering Laboratory CourseUsing Low-Cost Hardware and SoftwareMr. Felipe L. Carvalho, Florida Atlantic University Felipe L. Carvalho is a graduating senior in the Electrical Engineering program at Florida Atlantic Uni- versity (FAU), Boca Raton - FL. At FAU, he is a member of the Innovation Leadership Honors Program and as part of his undergraduate studies, is currently working on his Honors Project ”Biomedical Signal Processing.” Additionally, he is a co-op at BlackBerry, where he works closely with principles of telecom- munications and software testing. He
including personal characteristics of test takers, various features ofcomputer-based testing systems, and test content. These researchers believed that once thesevarious factors are controlled, test mode effect can be eliminated.To our knowledge, there have been no test mode studies conducted with engineering students inan engineering course. Additionally, the rapid advance of technology and incorporation intostudents’ lives at earlier ages certainly plays a role in how students may approach a paper-basedversus a computer-based test. With this in mind, it is important to gather up-to-date data onstudents with the described demographic. We believe that analyzing test mode effect with first-year engineering students in an engineering course could
.) Matthieu, J. and Rapp, T. “Laying the foundation for successful team performance strategies: The roles of team charters and performance strategies.” Journal of Applied Psychology, 94:1 (90-103), 2009.6.) Katzenbach, J.R. and Smith, D.K. “The Discipline of Teams.” Harvard Business Review, 71(2) (111-120), 1993.7.) Hirsch, P. “Improving Interpersonal Communication in Engineering Education: New Light on Teaching Teamwork.” Association for Business Communication and New Zealand Communication Association Asian- Pacific regional meeting, Auckland, NZ, December 10, 2003. Bransford, J., Brown, A., and Cocking, R. “How People Learn: Brain, Mind, Experience, and School
Paper ID #10980A community of practice approach to becoming an engineering education re-search professionalDr. Robin Adams, Purdue University, West Lafayette Robin S. Adams is an Associate Professor in the School of Engineering Education at Purdue University. She holds a PhD in Education, an MS in Materials Science and Engineering, and a BS in Mechanical Engineering. Her research is in three interconnecting areas: cross-disciplinary thinking, acting, and being; design cognition and learning; and theories of change in transforming engineering education.Ms. Catherine G.P. Berdanier, Purdue University, West Lafayette
Paper ID #9343From the mouths of students: two illustrations of narrative analysis to under-stand engineering education’s ruling relations as gendered and racedDr. Alice L Pawley, Purdue University, West Lafayette Alice L. Pawley is an associate professor in the School of Engineering Education with affiliations with the Women’s, Gender and Sexuality Studies Program and Division of Environmental and Ecological En- gineering at Purdue University. She has a B.Eng. in chemical engineering (with distinction) from McGill University, and an M.S. and a Ph.D. in industrial and systems engineering with a Ph.D. minor in women’s
engineering. Thereare several guiding principles of constructivism 14,20,24,36,41:1. Understanding comes from interactions with the environment. A learner’s knowledge comes from his/her pre-existing knowledge and experience; and new knowledge is formed when connecting previous experience to the new content and environment.2. Conflict in the mind or puzzlement is the stimulus for learning and determines the organization and nature of what is learned.3. Knowledge involves social negotiation and the evaluation of the viability of individual understanding.The literature suggests that a change in the development of curriculum in teaching IFEM coursesis worth exploring. When compared to
to pursue it in the future as it seems to be apromising line of work with great potential. If we did not venture out of our comfort zones forthis project, we may not have uncovered our interesting results. Page 24.496.11Additionally, we would like to offer recommendations to recent graduates of Ph.D. programs inengineering education. First, when applying to jobs be opened minded and never give up. Basedon the results of our work, many individuals outside of the engineering education communitystill do not understand what engineering education is or the value that engineering educationdegree holders bring to the academic setting. With that
fund his research. His research and teaching focuses on engineering as an innovation in P-12 education, policy of P-12 engineering, how to support teachers and students’ academic achievements through engineering, the measurement and support of the change of ’engineering habits of mind’ particularly empathy and the use of cyber-infrastructure to sensitively and resourcefully provide access to and support learning. Page 24.528.1 c American Society for Engineering Education, 2014 Enhancing the STEM Curriculum Through a Multidisciplinary Approach that Integrates Biology and Engineering
Science Board-Sponsored Workshop on “Moving Forward to Improve Engineering Education (Summary Notes)”, November 7, 2006, Georgia Institute of Technology.30. R. M. Ryan, and E. L. Deci. “Intrinsic and Extrinsic Motivation: Classic Definitions and New Directions,” Contemporary Educational Psychology, Vol. 25, pp. 54-67, 2000.31. J. Bransford et. al., How People Learn: Brain, Mind, Experience, and School: Expanded Edition, National Academies Press, Washington, DC.32. A. E. Black and E. L. Deci, “The effects of instructors’ autonomy support and students’ autonomous motivation on learning organic chemistry: A self-determination theory perspective,” Science Education, 84, 740-756, 2000.33. G. C. Williams, and E. L. Deci, “Internalization of
Paper ID #10091Game-Aided Pedagogy to Improve Students’ Learning Outcomes and En-gagement in Transportation EngineeringDr. Montasir Abbas P.E., Virginia Tech Dr. Montasir Abbas is an Associate Professor in the Transportation Infrastructure and Systems Engineer- ing at Virginia Tech. He holds a Bachelor of Science in Civil Engineering from University of Khartoum, Sudan (1993), a Master of Science in Civil Engineering from University of Nebraska-Lincoln (1997), and a Doctor of Philosophy in Civil Engineering from Purdue University (2001). Dr. Abbas has wide experience as a practicing transportation engineer and a
promote an interest in STEM careers. They also highlight the potentialfor engineering to be a natural integrator for science, math, and technology. They explain howengineering habits of mind, such as system thinking or creativity that are inherent to theengineering design process may support science, math, and technology learning.In particular, the Museum of Science at Boston13 has developed a set of units called Engineeringis Elementary (EiE). Cunningham and Hester4 suggest that, through this resource, elementaryteachers can integrate engineering with science in order to improve students’ engagement andproblem-solving skills and increase students’ technological literacy. EiE units connects sciencetopics such as weather, water, or sound to
Paper ID #8653Integrated 2D Design in the Curriculum: Effectiveness of Early Cross-SubjectEngineering ChallengesProf. Kevin Otto, Singapore University of Technology and Design Dr. Otto is an Associate Professor in the Engineering Product Development Pillar at the Singapore Uni- versity of Technology and Design. He teaches the design courses as well as disciplinary courses including thermodynamics, and is very interested in multidisciplinary education.Mr. Bradley Adam Camburn, University of Texas, Austin, and Singapore University of Technology & Design BSME Carnegie Mellon 2008 MSME University of Texas at Austin 2010 PhD
Paper ID #9852Multi-Course Alignment for 1st Year Engineering Students: Mathematics,Physics, and Programming in MATLABCaroline Liron, Embry-Riddle Aeronautical Univ., Daytona Beach Caroline Liron is an Assistant Professor in the Engineering Fundamentals Department, at Embry-Riddle Aeronautical University (ERAU), where she has been teaching since 2005. She obtained her bachelor’s in aeronautics and space from EPF, Ecole d’Ing´enieur (France), and her M.S. in aerospace engineering from ERAU. She currently teaches Introduction to Programming for Engineers. She is involved in devel- oping and maintaining the hybrid version of
designersgenerate, evaluate, and specify concepts for devices, systems, or processes whose form andfunction achieve clients’ objectives or users’ needs while satisfying a specified set ofconstraints” (p. 104). 15 Although there are different descriptions of the design process, 16, 17 mostof the models of engineering design are viewed as largely cognitive and tend to focus onrelatively uniform frameworks for thinking and “habits of mind.” This line of research has led toclaims that certain types of cognitive activity over a particular duration of time can lead to betterdesigns. 16, 18However, we do not view engineering design as a strictly cognitive activity that is separate fromrelationships, material worlds, cultures, and everyday experiences. Instead, we
Paper ID #10741INTEGRATING STUDY, RESEARCH AND INTERNSHIPS IN A YEAR-LONG INTERNATIONAL ENGINEERING PROGRAM ABROADDr. Sigrid – Berka, University of Rhode Island Dr. Sigrid Berka is the Executive Director of the International Engineering Program (IEP) at the Uni- versity of Rhode Island, and also the Director of the German IEP and the Chinese IEP, responsible for building academic programs with exchange partners abroad, internship placements for IEP’s dual degree students, corporate relations, and fundraising for the IEP. Bi-annually the IEP organizes the Colloquium on International Engineering Education. Under Sigrid’s
Paper ID #10820Learning Engineering Dynamics with a Videogame: A Look at How StudentsPlay the GameDr. Brianno Coller, Northern Illinois University Brianno Coller is Presidential Teaching Professor at Northern Illinois University. Early in his academic career, he studied complex dynamics and control of nonlinear systems such as turbulent boundary lay- ers, turbomachine instabilities, aeroelastic instabilities, bicycle dynamics, and traffic. More recently he has been studying the complex nonlinear dynamics of students learning engineering in the context of a videogame
Science in the properpedagogy required for teaching project-based engineering design. This multi-day training, heldin August, included discussion on identifying and explaining the different engineering disciplinesand practice in teaching hands-on engineering activities. Teachers also learned what makes agood engineering student and how to effectively teach different engineering habits of mind. As aresult, these teachers knew more than the average high school teacher about what engineering is,what the different disciplines entail and how to explain an engineering career path to students. Inshort, the training gave them the confidence necessary to encourage students to think about andprepare for careers in engineering
Paper ID #8851The efficacy of case studies for teaching policy in engineering and technologycoursesMr. Rylan C. Chong, Purdue University, West Lafayette Rylan Chong is a Ph.D. student in the Information Security Program and affiliated with The Center for Education and Research in Information Assurance and Security (CERIAS) at Purdue University. He has a Master’s Degree in Information Security from Purdue University. He also has a B.S. in Computer Science from Chaminade University of Honolulu. His research area is on technology policy.Dr. Melissa Dark, Purdue University, West LafayetteDr. Dennis R. Depew, Purdue University, West