AC 2012-3821: INTEGRATING PROJECT MANAGEMENT, LEAN-SIXSIGMA, AND ASSESSMENT IN AN INDUSTRIAL ENGINEERING CAP-STONE COURSEDr. Ana Vila-Parrish, North Carolina State University Ana ”Anita” Vila-Parrish is a Teaching Assistant Professor and Director of Undergraduate Programs in the Edward P. Fitts Department of Industrial and Systems Engineering.Dr. Dianne Raubenheimer, Meredith College Page 25.803.1 c American Society for Engineering Education, 2012 Integrating Project Management & Lean-Six Sigma Methodologies in an Industrial Engineering Capstone CourseAbstractThe ability to
AC 2012-4675: INTEGRATING STUDENT PROJECTS THROUGH THEUSE OF SIMULATION TOOLS ACROSS LOGISTICS ENGINEERING CUR-RICULUMDr. Pawel Pawlewski, Poznan University of Technology Pawel Pawlewski works as an Assistant Professor at the Department of Engineering Management, Poznan University of Technology. He holds a Ph.D. in mechanical engineering, with a specialization in organi- zation of production systems from the Poznan University of Technology. His research interests include organization of manufacturing systems, monitoring of operations management, reengineering and IT ap- plication for logistics, simulation, and modeling of processes.Dr. Zbigniew J. Pasek, University of Windsor Zbigniew J. Pasek is an Associate
AC 2012-4700: MEASURING THE EFFECT OF ONLINE HOMEWORKPROCEDURES ON STUDENT EXAM PERFORMANCEAlison M. Knight, Mayo Clinic Alison M. Knight received her bachelor’s degree in Industrial Engineering from Tennessee Technological University. She worked for three years for TranSystems as a simulation analyst. She then received her MSE in Systems Engineering at the University of Alabama in Huntsville. During her graduate studies, she was a teaching assistant and later instructor for undergraduate Engineering Economy courses. She is currently working as a Health Systems Engineering Analyst at Mayo Clinic in Rochester, MN.Dr. Gillian M. Nicholls, University of Alabama, Huntsville Gillian Nicholls is an Assistant Professor of
materials engineering from Auburn University. He has authored several book chapters and articles on follower component of leadership and is active in research on the leadership processes. Page 25.517.1 c American Society for Engineering Education, 2012 Embedding Leadership Topics in the Engineering CurriculumHow leadership is addressed in a quantitative based curriculum has challenged engineeringfaculty interested in leadership for some time. This paper describes an approach to developingleadership topics within a general engineering curricular program. Through the widespread useof student
, Engineering and Math (STEM) courses to solve real-world problems in the areas oftransportation, scheduling, manufacturing, logistics, and many others.With a Course, Curriculum and Lab Improvement (CCLI) grant project sponsored by theNational Science Foundation from 2009 - 2011, an updated Industrial Robotics and AutomatedManufacturing (IRAM) laboratory was developed. Utilizing this newly updated laboratory atMorgan State University (MSU), students are now able to use modern equipment within a set ofcourses specifically designed around the facility. These courses are in the areas of advancedmaterial handling systems, robotics and automation, computer-aided manufacturing, and flexiblemanufacturing systems. The integration of these courses with a hands
thecontents of separate courses are complementary. In the kind of curriculum being planned at theinstitution of one of the writers, teaching and learning in first-year learning communities willinvolve skills, content and disciplinary courses, all building upon one another.Learning communities in Engineering Economics coursesThere are several ways in which learning communities can be integrated into engineering andengineering technology programs. For example, an Engineering Economics course may bepaired with a Statistics course where both include some integrative assignment(s) applyingstatistical concepts to engineering economics problems; these assignments reinforce learning inboth subjects. The engineering economics course may go on to form the
systematic engineering design process to conduct undergraduate engineering management capstone projects. Journal of Engineering Education, April, 193-197.4. Howe, S. & Wilbarger, J. (2006). 2005 national survey of engineering capstone design courses. Proceedings of the 2006 American Society of Engineering Education Annual Conference and Exposition.5. McKenzie, L.J., Trevisan, M.S., Davis, D.C., & Beyerlein, S.W. (2004). Capstone design courses and assessment: A national study. Proceedings of the 2004 American Society of Engineering Education Annual Conference and Exposition.6. Noble, J.S. (1998). An approach for engineering curriculum integration in capstone design courses. International Journal of Engineering
reading documents and gathering data.The second step, study of alternatives, is an important part of the systems engineering philosophythat is rooted in methods. Most books appear partial to decision analysis (Hazelrigg11) andprobabilistic tools, e.g., probability trees, (Sage and Armstrong22). At least one chapter in eachbook appears to be devoted to this topic. The third step revolves around integrating all systemcomponents and launching the system. The fourth step is testing the performance of the system.The fourth step relies on techniques from operations research, e.g., queuing theory for discrete-event stochastic systems and scoring methods and objective function formulation etc. The finalstep essential captures the principle of continuous
Energy infrastructure will require a considerable expansion of thenation’s human capital, which will only be developed through intense collaboration amongmultiple players. However, the scale and intensity of current energy education efforts in theUnited States remain inadequate to produce the needed technological progress and human capital Page 25.73.2development[3]. This paper introduces the BGREEN (BuildinG a Regional Energy and EducationalNetwork) project. BGREEN is an integrated research and educational project supported byUSDA by a multi-million dollar grant. The project promotes collaboration among differentuniversities, colleges
facilitate the development of moral, ethical and sustainableintegrity, together with an understanding of management issues. Students are made aware ofvarious aspects of management that are important to the practising engineer and how sociallyresponsible management is an integral part of engineering. The programme also provides abase from which students may continue their management education. In these two papers thestudents are encouraged to explore possible alternatives beyond the knowledge andconstraints of the actual situation within their level of competence, as the beginning of a life-long learning process in their engineering careers.The new BE curriculum is designed to interest and challenge undergraduate engineeringstudents, and prepare them
, therefore making it important to both academicians, as well as, practitioners. EM as aformal degree has been present since the mid 1940s 3 and currently, there are more than 100universities in the US offering an undergraduate and / or graduate program in EM. EM programswere historically embedded within the departments of industrial engineering, depending upon theuniversities 4. However, in order to reflect the gradual shift from manufacturing to turn-keysystems integrators in a global economic environment, many more universities are aligning theirEM programs with their systems engineering program 5.Importance of Analyzing FailuresFailure analysis is the process of collecting and analyzing data to determine the cause of afailure. It relies on
currently included course. An example would be to discuss systemic risk concepts as a subsection of a course on risk management or as a section of a project management course. It could be further included as part of a systems integration course or as an introductory course to systems engineering or complex systems.d. The American Society of Engineering Management (ASEM) could consider making systemic risk a topic in the ASEM certification curriculum. Engineering Managers should be tested on the subject through especially identified scenarios/case studies of complex systems with a series of questions on how to manage the system and mitigate the overall risk associated with it.e. Systemic Risk could be included as a topic in the ASEM
common cash flow analysis calculations. However, as this isunlikely in the near future, it is suggested that this type of information be relegated to review orprep sessions for the test. The author runs these types of sessions each semester for studentspreparing for the exam. The argument here is that if students have successfully completed anengineering economy course that has pushed them to analyze the risk(s) of a project, they willfind it easy to learn how to use the factors in a timely manner for an exam.Curriculum ReplacementWith the reduction of coverage of financial mathematics, time in the curriculum can be focusedon tools for making good financial investment decisions, such as cash flow estimation, riskanalysis and multi-attribute
Discipline: The Art and Practice of the Learning Organization, Doubleday, 1990.4 Cochran, D. S., “Enterprise Engineering, Creating Sustainable Systems with Collective System Design:Part II,” The Journal of RMS in Systems Engineering, Spring Journal, 2010.5 Ohno, T., Toyota Production System: Beyond Large-Scale Production, Productivity Press, 1988.6 Monden, Y., Toyota Production System: An Integrated Approach to Just-In-Time, CRC Press, Taylorand Francis, 3ed., 2012.7 Cochran, D. S., Duda, J., Linck, J., and Arinez, J., “The Manufacturing System Design Decomposition,”SME Journal of Manufacturing Systems, Vol. 20, No. 6. (2000/2001).8 Hopp, W. and Spearman, M., Factory Physics, McGraw-Hill Higher Education, 2nd, 2000.9 Forrester, J., Principles
collection of Unit Plans that integrate technology. 3. Models of meaningful classroom projects that integrate instruction in developing critical thinking skills provide the learners with an opportunity to enhance their knowledge. 4. Tools and strategies for developing one’s own exemplary technology-supported learning should always receive encouragement from the instructor 5. It is important to learn how project-based units can effectively engage students in meaningful work and promote higher-order thinking. 6. It is necessary to see how questions and ongoing assessment keep project work focused on important learning goals. 7. One needs to gather ideas from a collection of exemplary Unit Plans and design one’s own
disorders, workplace layout, safety and health.The Industrial Engineering student typically takes at least one introductory course in ergonomicsas part of their undergraduate curriculum. Thus, work integrated learning is a natural fit due tothe presence of workplace features and discussions that necessarily happen in this type of class.Innovation is necessary as new workplaces and equipment are brought into the workplace withincreasing speed and complexity. Biomimicry seemed like an interesting application forphysical ergonomics problems since nature faces and adapts to numerous environmentalconditions and potential hazards.Bringing it All TogetherThese four fragmented topics – PBL, Innovation, Biomimicry and Ergonomics – are broughttogether in the
AC 2012-4100: SUSTAINABLE INDUSTRIAL ENGINEERING MODULESProf. Victoria C. P. Chen, University of Texas, ArlingtonDr. K.J. Rogers, University of Texas, ArlingtonMrs. Andrea M. Graham, University of Texas, Arlington Industrial and Manufacturing Systems Engineering DepartmentJohn F. Dickson, University of Texas, Arlington John Dickson has a bachelor’s degree in mechanical engineering from Anna University, India, a master’s in engineering management from the University of Texas, Arlington, and is pursuing a Ph.D. in sustainable engineering at the University of Texas, Arlington.Prof. Stephen Mattingly, University of Texas, ArlingtonDr. Melanie L. Sattler, University of Texas, Arlington Melanie Sattler serves as an Associate
AC 2012-5146: A METRIC-BASED, HANDS-ON QUALITY AND PRODUC-TIVITY IMPROVEMENT SIMULATION INVOLVING LEAN AND SIGMACONCEPTS FOR FIRST-YEAR ENGINEERING LAB STUDENTSDr. Yosef S. Allam, Embry-Riddle Aeronautical University, Daytona Beach Yosef Allam is an Assistant Professor in the Freshman Engineering Department at Embry-Riddle Aero- nautical University. He graduated from the Ohio State University with B.S. and M.S. degrees in industrial and systems engineering and a Ph.D. in engineering education. Allam’s interests are in spatial visualiza- tion, the use of learning management systems for large-sample educational research studies, curriculum development, and fulfilling the needs of an integrated, multi-disciplinary first
simulators for labs and healthcare providers together with integrated Logistics support systems for Advanced Cardiac Life Support. One of his current interests is in the area of manufacturing systems for rapid product design and development in international production. An extension of this work is the current effort that established the UTPA Rapid Response Manufactur- ing Center in a consortium of academic institutions, economic development corporations, industry, local, state, and federal governments. This initiative is an integral component of the North American Advanced Manufacturing and Research Initiative (NAAMREI). In addition, he has served and continues to serve in leadership positions in technology based economic