Paper ID #16876Materials Science and Engineering Reasoning: A New Tool for Helping Stu-dents See the Big PictureSuzanne Lane, Massachusetts Institute of Technology Suzanne Lane directs the Writing, Rhetoric, and Professional Communication program (WRAP) at MIT, is a Senior Lecturer in MIT’s Comparative Media Studies/Writing department, and teaches communica- tion in many engineering departments She also directs the associated lab, ArchiMedia, which studies how new media are shaping professional communication practices, and designs new digital tools for teaching communication.Prof. Andreas Karatsolis, Massachusetts
seen rapid growth in the importance of private standards in chocolate valuechains.15 With changes in technology increasing demand for other materials with serious ethicaland sustainability issues (especially cobalt, with 20% of the supply from Congo extracted bysmall-scale mining operations that have no oversight and rely on child labor and workerexploitation),16 students may find that their future engineering careers depend not just on theirknowledge of materials and manufacturing processes but possibly even more on their ability toplace that knowledge within an awareness of larger supply chain issues resulting from myriadcauses.ConclusionThe authors have enjoyed exploring the topic of chocolate from a pure knowledge perspective,along with
Paper ID #17211Engineering Design in a Materials Processing Laboratory Course through aGuided Case StudyDr. Richard Eitel, Stevens Institute of Technology Dr. Eitel is teaching associate professor in Department of Chemical Engineering and Materials Science at Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030; reitel@stevens.edu.Mr. Joshua Peter HillMr. Felix Jun Jie Zhang-XuDr. Kathy Shiang Chiou, Kessler Foundation Dr. Kathy Chiou is a research scientist at the Kessler Foundation in West Orange, NJ, where she studies cognitive outcome and recovery in individuals with traumatic brain injury (TBI). She
Paper ID #15981Special Interest Section of a Core Mechanical Engineering Course – Bioma-terial Emphasis of an Introduction to Materials CourseDr. Margaret Pinnell, University of Dayton Dr. Margaret Pinnell is the Associate Dean for Faculty and Staff Development in the school of engineering and associate professor in the Department of Mechanical and Aerospace Engineering at the University of Dayton. She teaches undergraduate and graduate materials related courses including Introduction to Ma- terials, Materials Laboratory, Engineering Innovation, Biomaterials and Engineering Design and Appro- priate Technology (ETHOS). She
Paper ID #14943Effect of Contextualization of Content and Concepts on Students’ CourseRelevance and Value in Introductory Materials ClassesProf. Stephen J. Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept
, workability and performance in application. Early human advancement was tied tothe ability of humans to understand the materials tetrahedron and apply it to find new materialshaving desirable properties for some application.Despite this call from NSF, and the aligned history of human civilization and materials, there arefew university MSE departments3 that offer students coursework that combine societal aspectsand engineering concepts in a laboratory setting. Engineering is a professional practice thatexists to solve societal problems, and having an understanding of how materials sciences iswoven into technological advancements to solve human problems is essential to development ofa well- rounded engineer, and aligned to the ABET Criteria, especially
materialconstituents, material properties, manufacturing and design of fiber reinforced polymercomposites (FRPCs).The ABET-ETAC Engineering Technology programs at Western Washington University(WWU) have recently transitioned to ABET-EAC Engineering programs. Thus, many changeshave been introduced to the already existing courses. This paper details one such introduction ofproject work involving hands-on manufacturing lab activities in an undergraduate course,Advanced Composites. The Advanced Composites course focuses mainly on teaching advancedmethods of manufacturing as well as mechanics of fiber reinforced polymer composites. Theobjective of the project discussed in this report is to design simple composite laminates of certainstrength so that they are able
and technology teacher, as well as several years of electrical and mechanical engineering design experience as a practicing engineer. He received his Bachelor of Science degree in Engineering from Swarthmore College, his Master’s of Education degree from the University of Massachusetts, and a Master’s of Science in Mechanical Engineering and Doctorate in Engineering Education from Purdue University.Dr. Louis Nadelson, Utah State University Louis S. Nadelson is an associate professor and director for the Center for the School of the Future in the Emma Eccles Jones College of Education at Utah State University. He has a BS from Colorado State University, a BA from the Evergreen State College, a MEd from Western
advises the Society of Women Engineers student chapter and leads the students in developing and implementing yearly outreach events for the K-8 female community. She is author of many peer-reviewed conference proceeding and journal papers in the areas of both porous metals and engineering education.Prof. Stephen J. Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co
Paper ID #16551Integrating a Research-Grade Simulation Tool in a Second-Year MaterialsScience Laboratory CourseDr. Aisling Coughlan , University of Toledo Aisling Coughlan obtained her B.Sc in Biomedical and Advanced Materials (2006) at the School of Sci- ence and Engineering, University of Limerick, Ireland, followed by a Ph.D (2009) in Biomedical Materials at the Materials and Surface Science Institute, also located at the University of Limerick. Subsequently, she obtained a position at the Inamori School of Engineering, Alfred University, New York (2009-2013) as an adjunct professor and a postdoctoral researcher in
has led a range of education efforts for CEM including working with undergraduate and graduate STEM students to teach science lessons to inner city elementary students in Columbus, OH; organizing on-campus outreach efforts for middle school students; coordinating a summer Research Ex- perience for Undergraduates (REU) program and organizing professional development experiences for graduate students and postdoctoral researchers. Prior to joining CEM, she worked at the University of California, Davis for a NSF funded Science and Technology Center, the Center for Biophotonics Science and Technology, where she led a variety of similar efforts. c American Society for Engineering Education
Paper ID #17236Accountability in the Flipped Classroom: Student-Generated Pre-LectureConcept ReflectionsDr. Brittany B. Nelson-Cheeseman, University of St. Thomas Brittany Nelson-Cheeseman is an Assistant Professor in the School of Engineering at the University of St. Thomas in St. Paul, MN. She received her B.S. in Materials Science and Engineering from the University of Wisconsin - Madison, and her M.S. and Ph.D. in Materials Science and Engineering with a Designated Emphasis in Nanoscale Science and Technology from the University of California - Berkeley. She was also a post-doctoral researcher at Argonne National Lab in