Paper ID #20401Learning from Engineering Disasters: A Multidisciplinary Online CourseDr. Gary P. Halada, Stony Brook University Dr. Halada, Associate Professor in Materials Science and Engineering at Stony Brook University, directs an interdisciplinary undergraduate degree program in Engineering Science. He designs educational ma- terials focused on nanotechnology, advanced manufacturing, and how engineers learn from engineering disasters and how failure and risk analysis can be used to teach about ethics and societal implications of emerging technologies. Halada also coordinates the Long Island Alternative Energy
apprenticeship related to clinicaljudgment and practice; and c) an apprenticeship to the ethical component of behavior ofthe profession.8 Interestingly, what is significantly different among the professions ofnursing and engineering is the degree to which students on their way to becomingpractitioners demonstrate an ability to empathize with others. A comprehensive study of1,872 undergraduate students enrolled at a large Midwestern U.S. research-universityidentified that nursing students have a significantly higher degree of empathy for othersas compared to students in a variety of other disciplines, including engineering.9This current study hinges upon the hypothesis that nursing theory provides a frameworkfor engineers from multiple disciplines to
solutions. This process ensures that students take ownership of their project as anengaged team. It allows students to strengthen their problem-solving and collaboration skills.The interdisciplinary teaching team models the teamwork skills the students are learning. Theaim is to promote interdisciplinary learning, foster teamwork, and improve student engagement.Other course objectives are to develop students’ creative problem solving, empathetic designpractices, communication skills, prototyping skills, and ethical reasoning. Students are expectedto become proficient at the empathetic design process as well as interdisciplinary communicationand teamwork. Creative problem solving, ethical reasoning, and realization of a product throughprototyping
Paper ID #19372Engineering Empathy: A Multidisciplinary Approach Combining Engineer-ing, Peace Studies, and DronesProf. Gordon D. Hoople, University of San Diego Dr. Gordon D. Hoople is an assistant professor of general engineering at the University of San Diego. His research interests lie in microfluidics, rapid prototyping, genomics, engineering ethics, and engineering education. He earned his MS and PhD in mechanical engineering from University of California, Berkeley and a BS in engineering from Harvey Mudd College.Dr. Austin Choi-Fitzpatrick, University of San Diego c American Society for
, social justice in engineering, care ethics in engineering, humanitarian engineering, engineering ethics, and computer modeling of electric power and renewable energy systems.Dr. Roman Taraban, Texas Tech University Roman Taraban is Professor in the Department of Psychological Sciences at Texas Tech University. He received his Ph.D. in cognitive psychology from Carnegie Mellon University. His interests are in how undergraduate students learn, and especially, in critical thinking and how students draw meaningful con- nections in traditional college content materials.Dr. Jeong-Hee Kim, Texas Tech University Jeong-Hee Kim is Professor of Curriculum Studies and Teacher Education in the Department of Cur- riculum and
research. Transdisciplinary research focuses on societalproblems. Therefore, the research process must take into account the ethical and social factors ofthe problem. Finally, the last category suggested by the developers in the framework isEffectiveness. As Legitimacy focused on the fairness and ethical aspect of the project in regardsto societal needs, Effectiveness of transdisciplinary will determine how the research will make apositive change in its context.Unlike Rubrics 1 and 2, this paper only presents a framework and a prototype rubric. The valuein the proposed Transdisciplinary Quality framework is that it can be used to determine whetheror not the selected project is meeting its research goal. While the researchers tested theframework on
Paper ID #20602The CASCADE Experience: An Innovative Cascaded Peer-Mentoring ProjectDr. Nael Barakat P.E., Texas A&M University, Kingsville Dr. Nael Barakat is a professor of Mechanical Engineering and Associate Dean for Research and Grad- uate Studies at Texas A&M University - Kingsville. He is a registered professional engineer in Ontario, Canada, and a fellow of the American Society of Mechanical Engineers (ASME). His areas of interest include Controls, Robotics, Automation, Systems dynamics and Integration, Mechatronics and Energy Harvesting, as well as Engineering Ethics, professionalism, and Education. Dr
and providing service learning opportunities for first-year programming students through various K-12 educational activities. Dr. Estell is a Member-at-Large of the Executive Committee for the Computing Accreditation Commission of ABET, and also serves as a program evaluator for the Engineering Accreditation Commission. He is also a founding member and serves as Vice President of The Pledge of the Computing Professional, an organization dedicated to the promotion of ethics in the computing professions through a standardized rite-of-passage ceremony.Dr. Ahmed Abdel-Mohti P.E., Ohio Northern UniversityDr. Firas Hassan, Ohio Northern University Firas Hassan is an associate professor at Ohio Northern University. He got his
project at the end. This paper presents our study with differentlab delivery formats, including preparation, implementation, survey data, observations, andfindings.Course BackgroundIntroduction to Engineering in our institution is a 3 credit course. The course includes one 1-hourlecture, and two 2-hour labs/week. In the lecture, students develop the skills needed during theirstudy of engineering. Topics include task/time management, effective use of notes, engineeringresearch, oral and written communications, problem-solving techniques, ethics and professionalresponsibility and institute resources. In the laboratory, students work in teams to complete avariety of engineering tasks.Each class is set to 85 students maximum. The lecture is held at a
20.7 Liberal Education 5 17.2 Multidisciplinary Engineering 4 13.8 Educational and Research Methods 3 10.3 Engineering Economy 2 6.9 Engineering Ethics 2 6.9 Engineering Management 2 6.9 Industrial Engineering 2 6.9 NSF Grantees Poster Session 2 6.9 Aerospace Engineering
student responses to the case studyimpressions survey.MethodologyEach course used two cases. “A Case in Point: From Active Learning to the Job Market,”published at the National Center for Case Studies Teaching in the Sciences (NCCSTS), served asthe common case to acquaint students to the NCCSTS pedagogy. Each participating facultymember also selected a second case that matched a lab or interactive hands-on modulecorresponding to content typically covered in their course. NC A&T developed a case to presentto the students the concepts of e-waste and risk assessment. The case was designed to teachstudent about disposal practices in the US versus third world countries for E-waste and discussenvironmental ethics and justice. In this case, students
rates.The main goal of this study is to understand how interdisciplinary instruction affects students’ability to identify, formulate, and solve problems, function on multidisciplinary teams, engagewith contemporary issues, communicate effectively in writing, verbally and visually, developappreciation of the impact of planning and engineering solutions in a variety of societal contexts,and develop understanding of their professional and ethical responsibilities. Soft skills, such ascommunication, team spirit, leadership, sociability, time management, documentation,presentation, ethics, negotiation, etc., are all critical in successful delivery of a standout App. Oursurvey questions cover these aspects in a succinct manner.Evaluation Design for
, four require service hours, and two have arequired study. Seven GCSPs distinguish themselves by levels of engagement, eight supportstudents with some funding, two provide residence hall for scholars, one requires scholars attenda retreat and two institutions do not award title of scholar until competition of project. This largevariation warrants further research into scholars produced from each program.Future Work & RecommendationsIt is important that scholars are receiving adequate preparation to tackle modern global issueswhile simultaneously understanding the social, economic, environmental, ethical, and technicalissues underlying these challenges. Future research will examine factors that encourage ordissuade undergraduate students
interdisciplinary teamsaffords engineering students with opportunities to experience and demonstrate criteria ofsuccessful engineers, including the ability to integrate mathematics, science, and engineering;design products and processes that meet the needs of users; demonstrate ethical responsibilityand communicate effectively. Like their elementary counterparts, early childhood educators often report negativeattitude towards teaching science, lack of confidence due to inadequate science knowledge, andlack of resources including instructional time, classroom space and instructional materials (Maieret al., 2013; Kallery 2004; Watters et al., 2000). Nonetheless, several projects have reportedsuccessful outcomes in integrating science and engineering
- church and society”ity Engage- (definition ofment reconciliation from MC foundational values document) 7.f. - Service Service “Student identifies - decisions specific ways in which based on (Question 8d) (s)he does or could seek ethic of to demonstrate the love service of God in service to others” (service phrasing
”, “cooperation between departments”, “change ofcurriculum”, “emphasis on design”, “teaching culture”, “learning method”, “teachingmethod”, “teaching technology”, “no significant change”, “philosophy of quality assurance”,“stakeholders of quality assurance”, “quality of engineering education at Purdue”, “relationsbetween internal and external quality assurance”, “faculty culture”, “organizationalenvironment”, “teaching culture”, “quality of program accreditation”, “assessment methodsof program accreditation”, “purpose or objective of program accreditation”, “requirement ofvarious stakeholders”, “strength of program accreditation”, “deficiency of programaccreditation”, “workload of program accreditation”, “ethical issue of program accreditation”,“emphasis
include the profes- sional formation of engineers, diversity and inclusion in engineering, human-centered design, engineering ethics, leadership, service-learning, and accessibility and assistive-technology.Prof. Brian C. Fabien, University of Washington c American Society for Engineering Education, 2017 Paper ID #19405 Professor Fabien joined the University of Washington in 1993 and is currently the Associate Dean for Academic Affairs in the College of Engineering. His research interests include the kinematics of mecha- nisms, dynamic system analysis and optimization, as well as control system design