Institute of Technology to weavesustainable design principles throughout our civil engineering undergraduate curriculum, withthe expectation that the civil engineering students incorporate sustainable design principles in amore thoughtful and logical manner in their civil engineering projects.The CE Department has previously reported the incorporation of sustainable design principlesfrom freshman to senior years and its impact on our students’ understanding of sustainability.However, we found that many students still struggled to incorporate social sustainability in theircapstone project designs. In response, we created and implemented a community engagementengineering module for our Codes and Regulations course. The module consisted of
Education, 2017 Engagement in Practice: Adding Service Learning to an Online Introduction to Engineering CourseA wide body of research shows increased student engagement and student retention from the useof high-impact practices such as learning communities, first-year experiences, undergraduateresearch, or service learning. However, many of these practices pose challenges on a virtualcollege campus or in an online classroom. This paper explores a case study where servicelearning projects were incorporated into two introductory engineering classes, one taught in atraditional face-to-face format and the other taught online. In this case study, the face-to-facestudents worked in small groups with a local historical
Shannon Keith-Marsoun has a B.S. in Community Health Education from Portland State University and has started pursuing a second bachelor’s degree in Mechanical Engineering from PSU. Shannon was an engineering mentor for the PSU Invention Bootcamp 2016 and she is the Project Coordinator for Invention Bootcamp 2017. Additionally, Shannon is a customer support specialist at Wold Consulting, focusing on association management for non-profit technical standards organizations. She is the Assistant Corporate Secretary for the Distributed Management Task Force, Inc. and has ten years of standards industry experience in customer support and project management. c American Society for Engineering
projects of real relevance,improved performance in traditional measures of learning, increased proficiency in relevant “softskills” such as communication, and an increased sense of civic involvement[2]. The communitypartner also benefits from the experience, through both the fruits of the student work and theincreased exposure to the partner’s mission[3].In the fall of 2016, a collaboration was begun between Br. Lawrence Machia (the monk whospearheads the maple syrup production effort) and the Engineering Science program of SaintVincent College. The goals of this collaboration are as follows: 1. Strengthen the connection between the relatively new Engineering Science program and the greater campus community, including the monastic
Pittsburgh and her MS in Mechanical Engineering from Case Western while working for Delphi. She completed her postdoctoral studies in engineering education at the University of Pittsburgh. c American Society for Engineering Education, 2017 Build As You Go: An Approach to Completing Laboratory ReportsIntroductionIn the fall 2015 offering of a junior-level bioengineering signals and systems laboratory, studentswere encouraged to submit three written progress reports for each of three projects they wereworking on to receive feedback and guidance from the instructor. Our course emphasized open-ended problem solving with associated technical report writing, as advocated by the
Paper ID #20374Student Paper: Small Team Agile Systems Engineering For Rapid Prototyp-ing of Robotic SystemsMr. Charles Avery Noren, Texas A&M University Vehicle Systems & Control Laboratory Charles Noren is an undergraduate research assistant at the Texas A&M University Vehicle Systems & Control Laboratory and task leader for the rail-based robotic system project. He is expected to graduate with a Bachelor of Science in Aerospace Engineering in May of 2018, and plans to continue his education at Texas A&M University with a Master of Science in Aerospace Engineering.Kendra Lynne Andersen, Texas A&M
since 2011. During his industrial experience, he worked on several infrastructure projects, some of which included airports, highways, and municipal roads. His technical background and project experience in infras- tructure projects includes in-depth knowledge of the nondestructive and destructive testing of pavements, infrastructure condition surveys, and pavement investigations related to airports, highways, and municipal roads. He worked on infrastructure evaluation, analysis, and design projects for the Ontario Ministry of Trans- portation; the Alberta Ministry of Transportation; the Saskatchewan Ministry of Transportation; and the cities of Hamilton, Calgary, Ottawa, and Wood Buffalo. These projects entailed
Paper ID #20318Embedding Renewable Energy Concepts into Engineering CurriculumDr. Radian G. Belu, Southern University Dr. Radian Belu is Associate Professor within Electrical Engineering Department, Southern University, Baton, Rouge, USA. He is holding one PhD in power engineering and other one in physics. Before joining to University of Alaska Anchorage Dr. Belu hold faculty, research and industry positions at uni- versities and research institutes in Romania, Canada and United States. He also worked for several years in industry as project manager, senior engineer and consultant. He has taught and developed undergrad
Movva, SAFM - College des Ingenieurs Italia Academic background in Nanotechnology from multiple universities - EPFL (CH), INPG (FR), Politec- nico di Torino (IT) & UC Berkeley (US). After a brief stint in strategic consulting, co-founded three start-ups - Smart-park, MTCS & Brava Italia. Later after obtaining, an MBA from Coll`ege des Ing´enieurs (CDI), currently heading the Innovation department in CDI ITalia which includes projects like Innovation for Change (Impact Innovation project - joint collaboration by CERN, Politecnico di Torino & CDI Italia), CDILabs (An open-innovation project that helps build sales relationships between MNCs and Startups) and School for Entrepreneurship. Passionate about
improve water-use efficiency and watershedmanagement around the world. Moreover, providing clean water and restoring the nitrogen cycleare two of the fourteen National Academy of Engineering Grand Challenges that futureengineers will need to act upon. Therefore, treating once-used water on-site to safe effluent-reusestandards—rather than using the water just once and flushing it back to an expensive, high-maintenance centralized treatment plant—has the potential to help address these challenges byrestoring the local water-nutrient cycle.With these considerations, during the spring of 2016 a capstone project at NortheasternUniversity was designed to task civil and environmental engineering students to providesolutions to those Engineering Grand
traditionalclassroom-based structure-oriented strategies. As the course balanced advanced reading,lectures, fieldwork, and exercises, students applied their practical background knowledge,based on international and multidisciplinary experiences, with an understanding of relevantand domain-specific theory and tools. In terms of international and multidisciplinaryexperiences, students were under the guidance and received the support of professionals frommultiple fields, including engineering, education, and design and from a multitude ofbackgrounds, including academia, industry, and government. In terms of domain-specifictheory and tools, the projects were based on a graduate level lowland flooding course whichincluded students from a variety of cultural
, she has served as Executive Director of the South Carolina Advanced Technological (SC ATE) Center of Excellence, leading initiatives and grant-funded projects to develop educational leadership and increase the quantity, quality and diversity of highly skilled technicians to support the American economy. Craft currently serves as Principal Investigator (PI), Mentor-Connect: Leadership Development and Outreach for ATE; PI, South Carolina National Resource Center for Expanding Excellence in Technician Education (SCATE); Co-PI, ATE Regional Center for Aviation and Automotive Technology Education Using Virtual E-Schools (CA2VES); and Co-PI, Centers Collaborative for Technical Assistance (CCTA). The SC ATE Center is
of meaningful work, KEEN (Kern Entrepreneurial Engineering Network)started a movement of fostering an entrepreneurial mindset in young engineers. This paper willdiscuss the experience and evaluation of incorporating entrepreneurial mindset learning in afreshman Introduction to Engineering course.Introduction to Engineering is a one-semester 2-credit hour freshman lecture and lab coursefocusing on teaching engineering design process, with students completing a half-semester longmulti-disciplinary design project. In addition, technical concepts such as engineering drawing,MATLAB and basic disciplinary knowledge are taught along with the introduction of “softskills” such as communication, teamwork and project management. This paper will discuss
cooking.Dr. Walter BolesDr. Ahad S. Nasab P.E., Middle Tennessee State University Dr. Ahad Nasab received his PhD from Georgia Institute of Technology in 1987. He then worked as a research scientist at the Center for Laser Applications of Physics Research Group of University of Tennessee Space Institute. In 1991 he joined the faculty of Middle Tennessee State University where he is currently the coordinator of the Mechatronics Engineering degree program. c American Society for Engineering Education, 2017 An indoor Bocce game played by autonomous robotsAbstract: This paper presents a course project assignment in an upper-division engineeringcourse: Controls and Optimizations. Students
. c American Society for Engineering Education, 2017 NSF CAREER: Towards a framework for engineering student innovationAbstractThe ability to innovate is essential in the rapidly evolving technological landscape. Many effortshave been made in engineering education to support student innovation (e.g., innovation andentrepreneurship programs and targeted courses). Yet, research on how engineering studentsapproach and experience innovation has been limited. In this CAREER project we conducted aseries of empirical studies using interviews, think-aloud protocols, and surveys to examineengineering students’ innovation skills, views of the innovation process, and experiences thatsupporedt their development of innovative competencies. Informed by
and a Ph.D. degree in Civil Engineering from the University of Colorado at Boulder in 1997. c American Society for Engineering Education, 2017 Holistic Interdisciplinary Design: Everyone Does Everything (Engineering Students as Sculptors)IntroductionThe ability to offer students an interdisciplinary experience under a team work setting isinvaluable in preparation for a career in the built environment. A hands-on approach coupledwith a real project presents unique opportunities in student learning. Learning in regards to thedynamics of team personalities, deadlines, approval procedures, and deliverables. One suchhands-on based real project was to design, build, and install an
Education: PhD. Major: Mechanical Engineering, Minor: Applied Mathematics Profes- sional Engineer License Certifications: Lean Six Sigma Black Belt Current Position: Associate Chair Engineering Technology and Mechanical Engineering Technology Program Director Industrial Experience Over 20 years of industrial experience initially as a Royal Naval Dockyard indentured craftsman machinist and Design Draftsman and project manager on Leander class Steam Turbine Naval frigates and diesel electric submarines. Most recently includes 12 years in Research and Development and Lean Six Sigma process improvement experience troubleshooting process issues in the Paper, Chemical, and Converting Industries
and unconscious assumptions throughout his career. c American Society for Engineering Education, 2017 Integrating Costing into an Engineering Economics CourseIntroductionThe Engineering Technology department at Tarleton State University has been working with itsindustrial partners for over 20 years to allow students the opportunity to engage in real worldprojects during their senior capstone projects. Over the past few years, the projects haveincreased in complexity and have shifted from facility layout and safety based projects to nowinclude tool and process design, with the added benefit that many of the companies are taking theprojects and implementing them at some point after students have
these databases allow recruitment effortsto continue year-round. In addition, past participants, faculty acquaintances, and collaborators onother projects, have been valuable source of quality applicants.The applicant pool tended to range between 30 – 60 individuals who were selected based on theiracademic record, a narrative essay about their motivation and goals, and on a letter ofrecommendation. The applicants were first arranged into two groups, target and non-targetapplicants. Each pool was then ranked against others in that pool. It has been found that GPA is akey predictor of success and benefits of undergraduate research, but this factor has a much higherimpact for students at the junior or senior level.8 Thus, a holistic approach was
Paper ID #20501It’s Elementary: Promoting the Construction Industry to ChildrenMs. Jennifer A. Warrner, Ball State University Jennifer Warrner is an instructor and internship coordinator in the Department of Technology at Ball State University in Muncie, Indiana.Dr. James W. Jones, Ball State University Dr. James W. Jones is the Construction Management Program Director and an Associate Professor in Ball State University’s Department of Technology. He has taught in the areas of leadership and construction management for more than 14 years and has more than a decade of experience managing construction projects in both
and research purposes. c American Society for Engineering Education, 2017 Cannons to spark thermal-fluid canonsAbstractHands-on projects are launch pads for sparking student interest. Specifically, design-build-test(DBT) projects can be effective tools for boosting students’ confidence in their ability to applytheoretical knowledge to practical engineering. Recognizing the need for relating the theoreticalaspects of thermodynamics to its application, an air cannon design-build-test project wasenvisioned and implemented.Air cannons can be simple and inexpensive to construct, while offering a robust platform toexplore thermodynamics, heat transfer, and fluid mechanics concepts. At the same
Paper ID #18096Simulation as Supplementary Tool in Construction Management EducationDr. Saeed Rokooei, University of Nebraska, Lincoln at Omaha Saeed Rokooei is an adjunct faculty and a post-doctoral researcher in the Durham School of Architec- tural Engineering and Construction at the University of Nebraska-Lincoln. Saeed obtained his bachelor’s degree in Architecture and then continued his studies in Project & Construction Management. Saeed’s research interests include Education, Project Management, Data Analytics, BIM, and Sustainability.Dr. James D. Goedert Ph.D., P.E., University of Nebraska, Durham James D
controlled system which automaticallyirrigates the university’s garden based on soil water needs. The design of the solar and windenergy collection systems, instrumentation, wireless data transfer, and automation mechanismsare presented. Since such work was carried out as part of engineering technology students’ seniorcapstone project, lessons on project management, budget and schedule development, teamwork,and technical communication are also presented.The USDA funded summer program of the CUAS became the catalyst that enabled us to expandthe impact of projects beyond engineering technology and connect to other majors at UHD. Inaddition, the grant created an opportunity for us to reach out to a local community garden. Weduplicated the solar-powered
industrial engineering from Texas A&M University. His educa- tion and research interests include project management, innovation and entrepreneurship, and embedded product/system development.Dr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology. Dr. Johnson’s research focuses on
early childhood development class with an engineering design class. Thefocus of the project was to allow the students to partner to accomplish an open ended designchallenge. The challenge presented by the professors was to design and develop the engineeringspecification and collateral documentation to execute the fabrication of a museum display. Themuseum displays are targeted towards teaching early childhood through middle childhoodintegrated STEM topics.The professors systematically grouped the students into 13 groups of 4-6 students from bothearly childhood education and engineering technology and management. The professors held abrief seminar with the students, where they explained the requirements of the design project aswell as providing
rates and the likelihood ofcontinued research participation and higher education. A new initiative at the University of Texasat Austin (UT Austin), the Freshman Introduction to Research in Engineering (FIRE) program,offers a select group of first-year students with an opportunity to participate in semester-long,faculty-sponsored mechanical engineering research and development projects. In addition to theirresearch, students attend bi-monthly lectures that introduce them to various topics in mechanicalengineering and current research in the field, the successes (and roadblocks) in engineeringresearch and how to overcome them, and career opportunities in engineering. An end of semesterposter session allows students to showcase their research
engineering summer programs at SAC, including instructor for Robotics Camps for 3rd to 5th graders (2012 - 2014), and instructor/coordinator for the Early Development of General Engineering program for high school students (2007 - 2015). Since 2011 he has also served as faculty adviser for numerous undergraduate research projects involving solar and hydrogen fuel cell technologies at SAC.Mr. Steven F Lewis, San Antonio College/Alamo Colleges Steven Lewis served as a training manager for Lockheed and Raytheon corporations around the world and spent a total of 27 years primarily in Colombia, Iran, Saudi Arabia and Mexico. He assumed the leadership role at the Service, Trade, and Industry Center of Alamo Colleges/San Antonio
. The system consists of a several proximity sensors, a Click PLC, powersupply, and 2 sets of green-yellow-red lights to simulate the traffic light controlled by a ladderlogic program.As compared to fixed time control systems, the foundation of a dynamic system is actually adetector which is nothing more than a simple device that communicates with the traffic light andinforms it about traffic conditions in real time. This time, the traffic light can not only adjusttiming, but also solve traffic congestion by changing the cycle of the traffic light as soon as thetraffic in the intersection gets heavy with cars.This project is using proximity sensors to simulate the switches or cameras that in a real scenerywill communicate to the PLC about the
. She has been teaching robotics with Lego Mindstorm to ME freshmen for several years. She is actively involved in community services of offering robotics workshops to middle- and high-school girls. Her research interests are dynamics and system modeling, geometry modeling, project based engineering design, and robotics in manufacturing. c American Society for Engineering Education, 2017 Different Lab Formats in Introduction to Engineering CourseAbstractMany incoming freshmen are ambiguous about which engineering major they are interested in.Exposing them to different engineering labs in freshman year will help them have a clearunderstanding about different majors.The objective of this
Paper ID #18207Engineering Leadership Development using an Interdisciplinary Competition-based ApproachDr. David Bayless, Ohio University Dr. Bayless is the Gerald Loehr Professor of Mechanical Engineering and the Director of Ohio Uni- versity’s Coal Research Center, part of Ohio University’s Center of Excellence in Energy and the Envi- ronment. He is also the director of the Robe Leadership Institute and director of the Center for Algal Engineering Research and Commercialization (an Ohio Third Frontier Wright Project) He is engaged in the development of energy and environmental technology such as producing algal-based