designed to assist students with self-efficacy beliefs and personal goals.At this University all engineering and computer science students take an introduction toengineering course that covers the engineering process, teamwork, communication skills, thedifferent branches of engineering, ethics, and co-curricular and extracurricular opportunities.Section sizes are ~30 students, so students can build community with peers and their professor.The professor of the Introduction to Engineering course is the academic advisor for his/her set ofstudents. Students declare or confirm their major by the end of the first semester. Resources tohelp students choose a major include laboratories, advisor meetings, student panels, a semester-long team project
technical professional.2 - Global I am aware of regional variations in technical standards, code, etc.3 - Global I can make ethical decisions in the context of a different culture.4 - Global I am familiar with cultural differences in professional ethics.5 - Global I understand how my technical perspective is different from those in other regions.6 - Global I am prepared to work with people who define and solve problems differently.7 - Global I am aware of how culture influences technical work.8 - Global I can adapt my technical knowledge and skills to different local conditions.9 - Global I can coordinate technical work that spans multiple countries.10 - Global I can function effectively as a member of multinational
Genomics Working with genomic databases 3 Measuring genomic data Visit to on-campus sequencing and flow cytometry facilities 4 Data Carpentry Workshop Basics of using R, a statistical computing language 5 Plant development and basic plant Macro- and micro-dissection of major plant research anatomy species 6 Research Ethics and Field trip to local company Communications 7 Data Mining Finding, downloading, and cleaning data sets 8 Machine Learning Making inferences using data sets 9 Plant Physiology Trip to
literature review and what 3 Support table & Map for topic must it contain? Support & Map Topic Devel. & Readings. Fine tune literature map, What possible research structure(s) & ethical issues 4 identify research discipline or genre should be consider for your thesis topic? Ethics Philosophy & K & R Ch. 1 & 7, Bring journal article How do research philosophy, scientific theory & 5 with methodology you might use methodology impact research outcome? Methodologies
,collecting data from the seminar, rather than a different course in the major, made it less likelythere would be confounds due to differences between instructors across sections. In addition, noother first-year course is mandatory for all first-year engineers (e.g., students with appropriateAdvanced Placement scores do not enroll in Calculus I). Each survey was one of severalassignments that could be completed for credit, and so not every student was required toparticipate. In alignment with the ethical standards required to protect participants in research inpsychology, students were given the option to complete the survey for points toward their grade,but elect to exclude their data from analyses from our research without penalty. Aside from
metacognition during the design process and other relevantengineering activities. Instruction in engineering will also help students develop Conceptions ofEngineers and Engineering (CEE) as they understand the many fields of work withinengineering and engineers roles in society. Becoming adept with the Tools, Techniques, andProcesses (ETools) for successfully accomplishing tasks is a goal of engineering educationoutside of the design process itself. When studying design problems, students should be mindfulof the surrounding Issues, Solutions, and Impact (ISI) and the global systems they affect, whileadopting the Ethical Responsibility (Ethics) of following engineering regulations and standards.Finally, Teamwork (Team) and Communication
have collaborated to achieve research uniformity across both the environments; we are coordinating better in this 3rd year).Research Design:The main goal of this study is to understand how interdisciplinary instruction affects students’ability to identify, formulate, and solve problems, function on multidisciplinary teams, engagewith contemporary issues, communicate effectively in writing, verbally and visually, developappreciation of the impact of planning and engineering solutions in a variety of societal contexts,and develop understanding of their professional and ethical responsibilities. Soft skills, such ascommunication, team spirit, leadership, sociability, time management, documentation,presentation, ethics, negotiation, etc., are
technical areas of civil engineering and analyze and interpret the resulting data explain basic concepts in project management, business, public policy, and leadership analyze issues in professional ethics explain the importance of professional licensureTable 3: Observed Distribution of Hours by B.S. Degree Program Type Math & Basic Science Credit Average Average (% minimum maximum Std. Dev. Program (hours) total hours)1 (hours) (hours) (hours) COV (%) Civil 35.55 27.47 32.00
align with the projects related toengineering education. Candidates were selected from approximately 28 applicants based oninterests, GPA, geographic location and letters of recommendation.Objectives: 1. Define, formulate, and solve problems related to power and energy systems 2. Design a power energy system or some of its components 3. Demonstrate an understanding of professional and ethical responsibility 4. Strengthen understanding of innovation and creativity 5. Develop the needed knowledge, skills and experiences in the areas of renewable energy, energy storage, and power semiconductors 6. Expose students to innovation/creativity 7. Problem solving skills 8. Communication skills 9. Design skills 10. Modeling skills 11
AY2017-18 course catalogue.Table 1. Overview of weekly topics for MET321- Changing World of 3D Printing and Rapid Prototyping Week Topics 1 Introduction to the Next Industrial Revolution: The New World of 3D Printing & Rapid Prototyping, Consumer safety, environment, green manufacturing, ethical issues. 2 Introduction to Computer Aided Design: SolidWorks, Google Sketchup, AutoCAD, Generating stl files 3 Personal Fabrication, Do-It-Yourself Product Development, Additive vs Subtractive Manufacturing, Molding, Laser cutting 4 3D Printing Technologies, Materials for 3D Printing 5 Bioprinting /Midterm Exam 6 FDM 3-D
/Factory. Table 2 Schedule for 2016 site program (SDS-Skill Development Seminar, RS-Research Seminar, GL-Group Lecture, PV-Plant Visit, CA-Cultural Activity) Week Action/Event Orientation and Information Week 1. Student registration 2. Walking tour of WSU campus and Midtown Detroit 3. WSU College of Engineering Dean’s and chairs’ overview of the college and 1 participating departments. 6/1-6/7 4. RS 1: Technical and Projects Overview 5. SDS 1: Introduction to Academic Research, Responsibility, and Ethics (by the Office of Undergraduate Research at WSU) 6. GL 1
andsocial validity (Gershenfeld, 2014). Objective parameters include both retention and performancedata, while subjective parameters include feelings of integration to the university environmentand perception of mentoring relationships, which are being gauged through survey instruments.Notably, the size of the population sample is within the range employed in some of the foremoststudies on mentoring in a college setting published to date (Frierson, Hargrove, & Lewis, 1994;Gershenfeld, 2014). This approach offers important advantages over a true randomizedexperiment, which has been associated with ethical concerns (Gershenfeld, 2014).Initial results of assessment: In terms of academic performance, participants in the research-center based
Community Service (Freshman) Field trip/mentoring session (construction & engr) Professional Skills Field trip/mentoring session (humanitarian engr) Professional Skills Spring Assignment to designated on-campus dormitory Learning Community Group sessions on college success and life skills Instruction Strategist College and civil engineering student mentoring Life Mentoring Moral and Ethical Development Educational Professional Skills Seminar Multi-part diversity training
resolving wicked problems. Journal of agricultural and environmental ethics, 25, 467-484.SHEPHERD, A. & COSGRIF, B. 1998. Problem-based learning: A bridge between planning education and planning practice. Journal of Planning Education and Research, 17, 348-357.TOMKINSON, B., TOMKINSON, R., DOBSON, H. & ENGEL, C. 2008. Education for sustainable development– an inter‐disciplinary pilot module for undergraduate engineers and scientists. International Journal of Sustainable Engineering, 1, 69-76. [1]
Paper ID #18735Which ”Me” am I Today? The Many Disciplines and Skill Sets of Engineer-ing EducatorsDr. Jennifer Karlin, University of Southern Maine Jennifer Karlin spent the first half of her career at the South Dakota School of Mines and Technology, where she was a professor of industrial engineering and held the Pietz professorship for entrepreneurship and economic development. She is now at the University of Southern Maine where she is a research professor of engineering and the curriculum specialist for the Maine Regulatory Training and Ethics Center.Dr. Donna M. Riley, Virginia Tech Donna Riley is Professor and
students in case they don’t want to access their own devices.Data were collected electronically using checkbox, a survey management online serviceavailable at the University that aligns with the Australian Code for the Responsible Conductof Research. The study secured ethical approval, and participation was voluntary. Studentswere asked to provide consent for his/her data to be used for study purposes in thequestionnaire. Results from the survey were analysed using the Statistical Package for theSocial Sciences (SPSS). SPSS provide researchers with a secure platform to analysequantitative data and conduct different statistical procedures.Sample/PopulationParticipants included 236 undergraduate engineering students enrolled in a third
Organization, 16(4), 411-428.Stets, J.E. & Burke, P.J. (2000). Identity theory and social identity theory. Social Psychology Quarterly, 63(3), 224-237.Stryker, S. (1980). Symbolic interactionism: A social structural version. Menlo Park, CA: Benjamin Cummings.Tan, J. (2008). Breaking the “Bamboo Curtain” and the “Glass Ceiling”: The experience of women entrepreneurs in high-tech industries in an emerging market. Journal of Business Ethics, 80(3), 547-564.Walker, M. (2001). Engineering identities. British Journal of Sociology of Education, 22(1), 75- 89.United States Census Bureau. (2014, December). Retrieved January 29, 2017, from http://www.census.gov/population/projections/data/national/2014
and providing service learning opportunities for first-year programming students through various K-12 educational activities. Dr. Estell is a Member-at-Large of the Executive Committee for the Computing Accreditation Commission of ABET, and also serves as a program evaluator for the Engineering Accreditation Commission. He is also a founding member and serves as Vice President of The Pledge of the Computing Professional, an organization dedicated to the promotion of ethics in the computing professions through a standardized rite-of-passage ceremony.Dr. Ahmed Abdel-Mohti P.E., Ohio Northern UniversityDr. Firas Hassan, Ohio Northern University Firas Hassan is an associate professor at Ohio Northern University. He got his
rooted in the nexus ofhumanitarian practice, sustainability awareness, social justice, and professional practice. It willemphasize student teamwork, along with greater consideration of social and economic factors,improved communication with diverse constituents, and reflection on an ethical understanding oftheir decisions and solutions. It also requires that faculty members be empowered to mirror thesevalues and skills in their instruction and mentoring. The RED grant connects professional skillsdirectly to the ability to develop and evaluate solutions within these broader contexts.In this work in progress (WIP), we review our progress towards achieving this vision including:• Establishing a foundation for a revised engineering canon that
Materials Science Engineering from Alfred University, and received his M.S. and Ph.D., both from Tufts University, in Chemistry and Engineering Education respectively. Dr. Carberry was previously an employee of the Tufts’ Center for Engineering Education & Outreach and manager of the Student Teacher Outreach Mentorship Program (STOMP).Dr. Trevor Scott Harding, California Polytechnic State University, San Luis Obispo Dr. Trevor S. Harding is Professor of Materials Engineering at California Polytechnic State University where he teaches courses in materials design, biopolymers, and nanocomposites. Dr. Harding has served as PI of a multiinstitutional effort to develop psychological models of the ethical decision making of
basedon the observations and comments they received.2.5 Friday’s Workshop SessionFor Friday’s industry and workshop session, guest speakers were invited to discuss and conductworkshops related to a real-world engineering system. The following is a list of the topics andworkshops that were discussed in detail during Friday’s sessionOn June 3, a Vaughn alumni and a Ph.D. student at City College (CUNY) addressed students inthe SEE program about educational determination, willingness, and ethics as prerequisites foracademic success.On June 10, an outstanding senior student in the Mechatronic Engineering program and Co-Founder & VP of Union Crate talked about his start-up company.On June 17, a Vaughn alumni and a Control Systems Engineer at
[7].Emotion has been taken out of engineering education, which in part drives the need to “re-humanize” engineering through multiple perspectives and diverse thought [8]. Dym et al., (2003)expand further by identifying the importance of reframing problems in engineering design. Byfocusing on the non-technical complexity of the problem, students learn not to oversimplifyproblems, but to design with social, ethical, and multi-disciplinary concerns in mind [8].Encouraging students to flex their creative skill within their respective classes, rather than solelythrough sparse elective requirements is vital to enhance their approach problems such that itincludes a multitude of perspectives. Framing a problem can often be the most difficult part
challenges students may experience during the transition to graduate school and getting started in coursework and research activities Communication strategies for working with colleagues from different backgrounds, experiences and disciplines Balancing academic, research and personal responsibilities Research ethics and responsible research practices for the mentor’s discipline4. ConclusionThrough the proposed activities which are grounded in best practices as well as multiple theories,participants will come out of this interactive panel discussion with draft versions of researchgroup charters, plans to enact mentorship contracts, and knowledge gained from other earlycareer faculty through case studies and group
students. Streaming anddownloading, whether legally or illegally, is the go-to format for the current generation of musicconsumers. Physical copies of music are largely not in demand, with the exception of certaingenres of music like heavy metal. It is thus helpful for students to learn where their currentforms of music enjoyment came from, and how they have evolved to where they are today. Thecourse has thus expanded the music acquisition topics to include the impacts of the internet onmusicians, record labels, and consumers, as well as ethical and legal arguments that have arisen.In a similar way, music creation has also been changed forever by the online technologies thatnow exist. In order to make a recording of music, musicians of the past
Clear Communication Application of Engineering Methods Warrior Ethos as Airmen and Citizens Ethics and Respect for Human Dignity The Human Condition, Cultures, and Societies Scientific Reasoning and the Principles of Science Leadership, Teamwork, and Organizational Management National Security of the American Republic in a Complex Global EnvironmentWhile two of these outcomes are specific to the military culture, the others are universal, andmany university and colleges have similar outcomes. Making sure new faculty understand theinstitutional outcomes is a critical element of any orientation program. This Faculty LearningOutcome on effective teaching practices included a session on outcome based lesson
expected. However, the workloads were judged to be heavy as the studentswere required to not only become familiar with the idea of a real-time operating system, but werealso being asked (some for the first time) to implement a complex hardware system on a shorttimetable. The students during this term dealt with high stress levels as they moved deeper intothe material. For some students, the high stress situations led to a stronger work ethic and anincreased sense of team responsibility. For others, it deepened the divide between members oftheir team who seemed more ahead of the curve and members who seemed to be lagging behindor not pulling their weight. This had an obvious impact on the final product that was eventuallydelivered. During
Paper ID #17699Managing Transformation to Crack Open Engineering EducationDr. Jennifer Karlin, University of Southern Maine Jennifer Karlin spent the first half of her career at the South Dakota School of Mines and Technology, where she was a professor of industrial engineering and held the Pietz professorship for entrepreneurship and economic development. She is now at the University of Southern Maine where she is a research professor of engineering and the curriculum specialist for the Maine Regulatory Training and Ethics Center.Dr. Cheryl Allendoerfer, University of Washington Dr. Allendoerfer is a Research Scientist
in May.Recruitment and RetentionEvery year, while this institute helps to recruit 1-2 students from the pool of 25-30 participantsfor the engineering and science programs, it also helps to support the few undergraduate studentsas mentoring counselors in summer as a form of retention and to improve their leadership,management and communication skills, and work ethics. The impact of instructing engineeringphysics at early stages on performance in the college is strong and could be systematized withexpanding such instruction to include additional engineering physics.Available details on the demographic statistics of STI from 2008 to 2016 are given below(except for 2010 for which year data is unavailable) in Table 1.Table 1: Demographic
engineering departments themselves remain pri-marily concerned with how design directly impacts their teaching and interactions with students.As architects, engineers, and planners for more than a dozen collegiate engineering-departmentbuildings in the past decade, SmithGroupJJR has helped develop a series of best practices re-lated to facility design in this new era. While not the only firm to explore them, SmithGroupJJRhas organized these new best practices into five distinct trends that encourage active participa-tion, collaboration, and even spontaneity, reflecting an underlying ethic of student engagementfrom the freshman level up. We present them here, provide real-world examples from Smith-GroupJJR’s portfolio, and also propose methods of
Paper ID #19411Self-Assessment to Improve Learning and EvaluationDr. Edward F. Gehringer, North Carolina State University Dr. Gehringer is an associate professor in the Departments of Computer Science, and Electrical & Computer Engineering. His research interests include computerized assessment systems, and the use of natural-language processing to improve the quality of reviewing. He teaches courses in the area of programming, computer architecture, object-oriented design, and ethics in computing. c American Society for Engineering Education, 2017 Self-Assessment to Improve Learning and