Paper ID #23604Breaking Down the Silos with an Integrated Laboratory ExperienceDr. Barbara E. Marino, Loyola Marymount University Dr. Barbara E. Marino is an Associate Professor in the Department of Electrical Engineering and Com- puter Science at Loyola Marymount University. She also serves as the Undergraduate Director for the Electrical Engineering Program at LMU. Her current research interests include engineering design and K-12 STEM outreach. Dr. Marino received the B.S.E.E. degree in 1989 from Marquette University and the M.S. and Ph.D. degrees in electrical engineering from the University of Notre Dame in 1993 and
Paper ID #22297Implications of Contextual Empathic Design for Engineering EducationMr. Benedikt von Unold, Stanford University Benedikt studied Medical Engineering and Mechanical Engineering at the Technical University of Munich (TUM). In 2017, he joined the Designing Education Lab at Stanford University to learn more about the integration of user backgrounds in design. He was involved in various entrepreneurial activities and worked as a student in small, medium and large companies. The creation of innovation was both an essential part in his studies as it was in his jobs.Ms. Annette Isabel B¨ohmer, Laboratory for
ferroelectric, dielectric and piezoelectric materials in the form of thin films and bulk composites for sensing/actuation and energy storage/harvesting applications. Dr. Cook-Chennault’s research group, the Hybrid Energy Systems and Materials Laboratory, conducts work towards understanding the fundamental mechanisms and processing parameters that allow for the control of physical material characteristics. In addition to this work, Dr. Cook-Chennault is the director of the Green Energy Undergraduate Program (GET UP) program which is funded through the National Science Foundation and the Student Learn and Achievent in Aerospace and Mechanical (SLAAM) Engineering Program. c American Society for
engineering designconstraint, and a need for a fun engineering project that engaged freshman students. This projectis design-centric, and so all laboratory activities are intended to support the design challenge atthe end of the project – while also containing many learning objectives throughout which addressgeneral engineering concepts and competencies. 1To develop this lab module, four design aspects (programming, physics, electronics, andmechanics) were considered. All aspects were presented at a freshman level and implemented infour two-hour labs. Students learn the concepts as relevant to their design project in each two-hour lab. These four aspects were chosen because they provide an opportunity
Paper ID #22642Academic Practice/Design Interventions: An Activity-Based Design Coursefor Conceptualizing Failure and Factor of SafetyMr. Nikolaos E. Vitoroulis Jr, Stevens Institute of Technology Nikolaos Vitoroulis supervises the Engineering Design Laboratories at Stevens Institute of Technology. He earned his Bachelor and Master of Mechanical Engineering at Stevens and specialized in Robotics, Mechatronics, and Manufacturing. As a member of the Innovation, Design & Entrepreneurship at Stevens (IDEaS) team, he works with the development team to update and generate engineering curriculum con- tent. His past industrial
and civil engineering. Currently he is the program coordinator at Westville campusProf. Masoud Mojtahed, Purdue University Northwest Dr. Mojtahed is a professor of mechanical engineering at Purdue University Northwest. His areas of ex- pertise are theoretical and experimental mechanics, fracture and failure analysis, finite element methods, and dynamic systems. Dr. Mojtahed served as the ABET evaluator for six years. He also served as a Summer Faculty Visitor and as a consultant at Argonne National Laboratory for five years. Dr. Mojtahed is the recipient of the Air Force Summer Research Award. He also served as the Coordinator of Tech- nical Assistance Program and the coordinator of Mechanical Engineering Program
indicating that basic microcontroller programmingknowledge would have been valuable not only for completing the projects in the introductorydesign course, but also for use in upper level engineering courses and projects of personalinterest. Not only were students eager to learn microcontroller basics, instructors also recognizedthat by introducing students to these skills, the resulting projects may be higher quality and therange of design challenges that can be assigned may be broadened.Use of microcontroller technology in freshman level courses is not new, and these concepts havebeen taught through in-person laboratory instruction with positive results at numerousuniversities [2], [3], [6]. Additionally, multiple universities have employed a
language such as MATLAB, and a few on full-semester, client-baseddesign projects, all seek to increase retention and improve understanding of engineering conceptsat an early stage. Below, a few of many quality program are described; these were selected becausethey highlight and assess topics of interest to our program, including creativity, real-world designchallenges, and development of technical skills and self-confidence. With the intention of exhibiting that engineering is a creative process and increasinginterest in electrical and computer engineering (ECE), The University of Alabama developed adesign laboratory freshmen course for ECE students [12]. In this course, the creative process forthe students’ designs included brainstorming
activities were fun and educational for freshmen and included water-bottle rocket design, robotic maze-following, LED circuit design, and bridge truss design. In fall2016, a humanitarian engineering section was included as the fourth rotation (Figure 1) andfocused on using mechanical, civil, or electrical engineering skills in a humanitarian setting. Thiswas a commendable step toward improving the course and addressing broader impacts ofengineering, but something was still lacking. While these activities provided a glance into sometypical laboratory exercises in the various engineering disciplines and kept students engaged, thecourse did not emphasize human-centered design concepts that are vital for solving real-worldchallenges. Additionally
Biomed- ical Engineering degrees from Drexel University, and her PhD Bioengineering degree from the University of Washington. Between her graduate degrees, she worked as a loop transmission systems engineer at AT&T Bell Laboratories. She then spent 13 years in the medical device industry conducting medical de- vice research and managing research and product development at several companies. In her last industry position, Dr. Baura was Vice President, Research and Chief Scientist at CardioDynamics.Dr. Leanne Kallemeyn, Loyola University Chicago Leanne Kallemeyn, Ph.D., is an Associate Professor in Research Methodologies at Loyola University Chicago. She teaches graduate-level courses in program evaluation
social motive can be built explicitly or implicitly. Team projectassignments can be an explicit social motive, and the informal atmosphere can be an implicitway to promote social interaction. Intrinsic motive can be conducted through theimprovement and completeness of laboratory practices, assignments, and projects. Extrinsicmotive can be achieved by offering incentives like rewards, such as extra points, prizes,certificates, etc. CIM believes that only with strong capabilities as a basis, a student’s innovation can beinspired under the guidance of intrinsic or extrinsic motives. CIM systematically integratesthe teaching elements commonly applied in system engineering courses, such as learning-by-doing and innovative skills into give a
computer-based models at theexpense of physical models. This fact is behind a general trend of teaching applied engineeringsubjects with minimal students’ involvement with physical set-ups including laboratoryexperiments. Carrying out laboratory experiments and generating experimental data, visiting aproject site, and using pencil and paper to produce a schematic, are gradually fading away. Thesetraditional tools were instrumental in developing an engineering common sense. It is argued herethat generating data from physical models is potentially a great learning tool, particularly whenthe model is built by the students. Building a model, testing a model, generating physical datafrom the model, and analyzing said data, help students alternate
in the fall. The course serves as a way for students to become familiar with theexpectations of college classes and to give them an idea of what mechanical engineering studentsdo. Students work in a team environment once a week on laboratory projects and open-endedmini-design projects where they incorporate elementary engineering design methodologies todesign some device within certain constraints. Once students begin working on their final designprojects, they meet outside of class to brainstorm ideas, build and test prototypes, and refine theirfinal designs. The final project typically lasts five weeks. Due to budgetary constraints, studentsconstruct their project out of common scrap/recycled materials. The final projects vary bysemester
Chair ofthe Woodruff School of Mechanical Engineering at Georgia Tech – Savannah. He was also the FoundingDirector of the Systems Realization Laboratory at Georgia Tech.Farrokh’s current research focus is the model-based realization of complex systems by managing uncer-tainty and complexity. The key question he is investigating is what are the principles underlying rapid androbust concept exploration when the analysis models are incomplete and possibly inaccurate? His questfor answers to the key question is anchored in three projects, namely,Integrated Realization of Robust, Resilient and Flexible NetworksIntegrated Realization of Engineered Materials and ProductsManaging Organized and Disorganized Complexity: Exploration of the Solution
the University of Notre Dame and Associate Professor of Me- chanical and Mechatronic Engineering at the National University of Colombia. Prof. Tovar received his B.S. in Mechanical Engineering and M.S. in Industrial Automation from the National University in 1995 and 2000, respectively. He earned his M.S. and Ph.D. in Mechanical Engineering from the University of Notre Dame in 2004 and 2005. Currently, Prof. Tovar is the director of the Engineering Design Research Laboratory at IUPUI and the faculty mentor for the IUPUI Robotics Club. His main research areas include biologically inspired optimization and multiscale design methods for materials and mechanical systems.Dr. Sohel Anwar, Indiana University-Purdue University
, and other purposes [5], [11]. In some contexts, electronic logs or online portfolios maybe used instead of a physical notebook [11], [12]. In academic and industry laboratories, thesenotebooks are permanent, legal documents that have strict protocols for use in order to clearlydocument procedures, establish intellectual property, and protect research subjects [12], [13].These blank books are a tool of the engineering profession, but are also viewed as pedagogicaltools, recommended as a best practice for undergraduate engineering faculty to use for bothinstructional and assessment purposes [3], [5], [11]. While it has been shown that a blank notebook offers some benefits for engineeringstudents [5], [11], for a student engaging in the