Paper ID #21714Assessing the Influence of Lecture/Laboratory Instructor Pairings on StudentPerception and Learning OutcomesDr. Simon Thomas Ghanat P.E., The Citadel Dr. Simon Ghanat is an Assistant Professor of Civil and Environmental Engineering at The Citadel (Charleston, S.C.). He received his Ph.D., M.S., and B.S. degrees in Civil and Environmental Engineering from Arizona State University. His research interests are in Engineering Education and Geotechnical Earthquake Engineering. He previously taught at Bucknell University and Arizona State University.Dr. J. Michael Grayson, The Citadel Dr. J. Michael Grayson is a
systems play an integral role in large-scale processes for interfacing with transducers and machinery for real time control and dataacquisition. The increasing demand to integrate SCADA systems with remote networks andInternet of Things (IoT) technologies has raised concerns for information security specialists.These systems are thought to have notable security vulnerabilities and may be subject to anincreasing number of cyber threats. In this paper/project, several students from Sam Houston StateUniversity design and deploy a SCADA laboratory to better understand these systems and theinherent security threats that go with them. The details including system infrastructure, challengesfaced during the establishment of the laboratory, student and
Paper ID #24034Design and Implementation of Electric Drives Laboratory using CommercialMicrocontroller Development KitsMr. Bhanu Babaiahgari, University of Colorado, Denver Mr. Bhanu Babaiahgari received his M.S degree from University of Colorado Denver, Denver, in 2015. He is currently pursuing PhD at University of Colorado Denver supervised by Dr. Jae-Do Park. Since 2016, he has been teaching Electric drives and Energy conversion laboratory and Energy conversion lab- oratory as part-time graduate instructor. He is a research assistant at Dr. Park’s Energy and Power lab under Energy Conversion Research Force (ECRF). His
Paper ID #22479Student Engagement and Industry Readiness in a Systems Exploration, En-gineering, and Design Laboratory (SEED Lab)Dr. Vibhuti Dave, Colorado School of Mines Dr. Vibhuti Dave is a Teaching Professor in the department of Electrical Engineering at Colorado School of Mines since 2011. She also serves as the assistant department head. She is heavily involved with un- dergraduate curriculum updates, assessment of learning outcomes and teaching core EE classes. Prior to Mines, she was at Penn State Erie, The Behrend College as an Assistant Professor in the Electrical, Com- puter, and Software Engineering program
Paper ID #22725Work in Progress: Designing Laboratory Work for a Novel Embedded AICourseDr. Mehmet Ergezer, Wentworth Institute of Technology Mehmet Ergezer (S’06) received the B.S. and M.S. degrees in electrical and computer engineering from Youngstown State University, Youngstown, OH, USA, in 2003 and 2006, respectively. He received the D.Eng. degree in artificial intelligence from the Department of Electrical and Computer Engineering, Cleveland State University, Cleveland, OH, USA, in May 2014. From 2003 to 2005, following his internship with U.S. Steel, he was a Graduate Assistant with Youngstown State University. In
Paper ID #22297Implications of Contextual Empathic Design for Engineering EducationMr. Benedikt von Unold, Stanford University Benedikt studied Medical Engineering and Mechanical Engineering at the Technical University of Munich (TUM). In 2017, he joined the Designing Education Lab at Stanford University to learn more about the integration of user backgrounds in design. He was involved in various entrepreneurial activities and worked as a student in small, medium and large companies. The creation of innovation was both an essential part in his studies as it was in his jobs.Ms. Annette Isabel B¨ohmer, Laboratory for
Paper ID #23488Work in Progress: An Economical and Open-source Mechanical Testing De-vice for Biomaterials in an Undergraduate Biomechanics Laboratory CourseDr. Julien Henri Arrizabalaga, University of OklahomaDr. Matthias U. Nollert, University of OklahomaDr. Rachel C Childers, University of Oklahoma Dr. Childers is an Assistant Professor of Practice in the Stephenson School of Biomedical Engineering at the University of Oklahoma. She developed and teaches all of the Junior-level biomedical engineering lab courses (6 different core areas) within the department. c American Society for Engineering
Paper ID #23214Software Defined Radio-based Mixed Signal Detection Laboratories for En-hancing Undergraduate Communication and Networking CurriculaDr. Zhiqiang Wu, Wright State University Dr. Zhiqiang Wu received his BS from Beijing University of Posts and Telecommunications in 1993, MS from Peking University in 1996, and PhD from Colorado State University in 2002, all in electrical engineering. He has worked at West Virginia University Institute of Technology as assistant professor from 2003 to 2005. He joined Wright State University in 2005 and currently serves as full professor. Dr. Wu is the author of national CDMA
Paper ID #22649Work in Progress: Developing Assignments to Reinforce Process Knowledgefor a Medical Equipment Troubleshooting Laboratory CourseDr. Renata Fortuna Ramos, Rice University Renata Ramos is an Associate Teaching Professor and the Director of Undergraduate Studies in the De- partment of Bioengineering at Rice University, 6100 Main St., Houston, TX 77005: rfr1@rice.eduMiss Kathryn Kundrod, Rice University Kathryn Kundrod is pursuing her PhD with Dr. Rebecca Richards-Kortum at Rice University. She works toward the development of low-cost HPV tests for cervical cancer screening. c American Society
Paper ID #23078Work in Progress: Developing a Multi-dimensional Method for Student As-sessment in Chemical Engineering Laboratory CoursesDr. Daniel D. Anastasio, Rose-Hulman Institute of Technology Daniel Anastasio is an assistant professor at Rose-Hulman Institute of Technology. He received a B.S. and Ph.D. in Chemical Engineering from the University of Connecticut in 2009 and 2015, respectively. His primary areas of research are game-based learning in engineering courses and membrane separations for desalination and water purification.Dr. Heather Chenette, Rose-Hulman Institute of Technology Heather Chenette is an
Paper ID #22308Work in Progress: Assessment of Google Docs and Drive for Enhanced Com-munication and Data Dissemination in a Unit Operations LaboratoryDr. Christopher James Barr, University of Michigan Dr. Christopher Barr is the Instructional Laboratory Supervisor in the Chemical Engineering Department at University of Michigan. He obtained his Ph.D. at University of Toledo in 2013 and is a former Fellow in the N.S.F. GK-12 grant ”Graduate Teaching Fellows in STEM High School Education: An Environmen- tal Science Learning Community at the Land-Lake Ecosystem Interface”. His main responsibilities are supervising and
Paper ID #22660Creating and Assessing an Upper Division Additive Manufacturing Courseand Laboratory to Enhance Undergraduate Research and InnovationDr. Patricia Ann Maloney, Texas Tech University Dr. Patricia Maloney is an assistant professor in the Department of Sociology, Anthropology, and Social Work at Texas Tech University. Dr. Maloney has 10 years of experience as a sociologist of education and holds a master’s in education from the University of Pennsylvania, focusing on individual- and program- level assessment. She also holds a master’s in sociology, a master’s in philosophy, and a doctorate in sociology from Yale
Paper ID #22129Generating Interest Among Undergraduates Toward Research in Environ-mental Engineering by Incorporating Novel Desalination Technology-basedHands-on Laboratory AssignmentsDr. Sanjay Tewari, Louisiana Tech University Dr. Tewari holds joint appointment of Assistant Professor of Civil Engineering and Construction En- gineering Technology at the Louisiana Tech University. Prior to joining Louisiana Tech, he earned his Bachelor of Engineering (Civil Engineering) and Master of Technology (Chemical Engineering) in India. Later, he joined Texas A&M University and earned his Doctor of Philosophy in Civil
, Ohio.Tamara Lea Kinzer-Ursem, Purdue University-Main Campus, West Lafayette (College of Engineering) c American Society for Engineering Education, 2018 The impact of integrating a flipped lecture in a Biotransport laboratory course on student learning and engagementAbstractIntroduction: Inquiry-based learning is vital to the engineering design process, and mostcrucially in the laboratory and hands-on settings. Through the model of inquiry-based design,student teams are able to formulate critical inputs to the design process and develop a strongerand more relevant understanding of theoretical principles and their applications. In the junior-level Biotransport laboratory course at Purdue University’s
Paper ID #21973Work in Progress: Development of Web-based Pre-laboratory Modules to In-crease Motivation and Reduce Cognitive LoadKimia Moozeh, UNIVERSITY OF TORONTO Kimia Moozeh is a PhD Candidate, graduate research and teaching assistant in Engineering Education at the University of Toronto. She received her Hon. B.Sc. in 2013, and her Master’s degree in Chemistry in 2014. Her dissertation explores improving the learning outcomes of undergraduate engineering laborato- ries by bridging the learning from a larger context to the underlying fundamentals, using digital learning objects.Prof. Deborah Tihanyi, University of
University, we have partnered with Xilinx, a leading manufacturer ofFPGAs and a leading provider of programmable platforms to develop a graduate level course forComputer Engineering curriculum to bridge the gap between computer engineers and softwaredevelopers. This course would allow students from engineering and computer science majors tobe able to develop and implement applications on FPGAs using Python programming languageand overlays that are similar to software libraries. In this paper, we describe the structure of thecourse along with the associated topics and laboratory exercises.I. IntroductionToday, Field Programmable Logic Devices (FPLDs) are considered as an alternative toApplication Specific Integrated Circuits (ASICs) in
Manufacturing, Automation and Robotics, and CAE in Manufacturing Processes fields. c American Society for Engineering Education, 2018 Development of Multifunctional Educational SpacesAbstractThis paper focuses on multifunctional educational space development for engineering programs,especially for mechanical and manufacturing engineering. The author has been designing anddeveloping new instructional spaces in his school for the last ten years. Most of these spacesoriginally was aimed for a single function, laboratory or classroom. Due to limitations in spaceand growing research needs, this engineering program requires development of multipurposelearning and research spaces. Recent efforts included design and
ferroelectric, dielectric and piezoelectric materials in the form of thin films and bulk composites for sensing/actuation and energy storage/harvesting applications. Dr. Cook-Chennault’s research group, the Hybrid Energy Systems and Materials Laboratory, conducts work towards understanding the fundamental mechanisms and processing parameters that allow for the control of physical material characteristics. In addition to this work, Dr. Cook-Chennault is the director of the Green Energy Undergraduate Program (GET UP) program which is funded through the National Science Foundation and the Student Learn and Achievent in Aerospace and Mechanical (SLAAM) Engineering Program. c American Society for
Paper ID #23512Guided Modules Emphasizing Process-Based Troubleshooting Techniques HelpBelow-Average Performing Students Improve Instrumentation SkillsDr. Renata Fortuna Ramos, Rice University Renata Ramos is an Associate Teaching Professor and the Director of Undergraduate Studies in the De- partment of Bioengineering at Rice University, 6100 Main St., Houston, TX 77005: rfr1@rice.edu c American Society for Engineering Education, 2018 Guided Modules Emphasizing Process-Based Troubleshooting Techniques Help Below-Average Performing Students Improve Instrumentation SkillsAbstractInstrumentation laboratory
disciplines. He is a senior member of IEEE and he served in IEEE/Industry Application Society for 15 years at various capacities. He served as chair of Manufacturing Systems Development Applications Department (MSDAD) of IEEE/IAS. Currently, he is serving a two-year term as the chair of the Instrumentation of ASEE (American Society of Engineering Education). He authored over 29 refereed journal and conference publications. In 2009 he as PI received NSF-CCLI grant entitled A Mechatronics Curriculum and Packaging Automation Laboratory Facility. In 2010 he as Co-PI received NSF-ATE grant entitled Meeting Workforce Needs for Mechatronics Tech- nicians. From 2003 through 2006, he was involved with Argonne National Laboratory
Paper ID #22370Work in Progress: Identifying Current Standards and Addressing the Needfor Further Process Safety Education in Unit Operations CoursesMs. Tracy L. Carter, Northeastern University Tracy Carter is a PhD candidate in the Chemical Engineering department at Northeastern University and has been the instructor of record in the Unit Operations Laboratory for the past seven years. She earned the M.S. degree in 1998 and the B.S. degree in 1993 from Northeastern University. Her primary interest is in integrating chemical process safety into the chemical engineering curriculum.Prof. Samira M. Azarin, University of Minnesota
report describes our objectives, rationale, implementations,and assessment plans in developing a practical robotic ultrasonic welding process as aneducational hands-on project and laboratory exercises for undergraduate STEM students, andparticularly Engineering Technology majors. The project combines ultrasonic welding ofplastics, robotics, force sensors, rapid prototyping, thermal imaging and image processing in apractical demonstration of an industrially-important automated plastics manufacturingtechnology. An ultrasonic horn attached to the end of a robotic arm can be programmed to spotweld or seam weld acrylic parts. The process is monitored and optimized using a thermalimaging camera and a force sensor.Introduction and Background
laboratories/experiences associated withthem. For the first experience, students developed and printed a 3D imaging phantom to use inall subsequent imaging modalities. This required students to familiarize themselves withFusion360 and the 3D printers, which satisfied both learning objectives 1 and 5. During the Xraysection of the course, the students brought their phantoms to a research imaging facility wherethey were able to create Xray images and CT images of their phantoms. For the CT portion ofthe course, students used visible light and simple backprojection to reconstruct a wooden block.For the ultrasound unit, students arrived in the lab to their phantoms obscured by milk and had touse the ultrasound images to identify which phantom was which
, teaching and assessing upper-level Biomedical Engineering laboratory courses, with particular interest in improving student technical communication skills. c American Society for Engineering Education, 2018 Work in Progress: Improving Biomedical Engineering Students’ Technical Writing through Rubrics and Lab Report Re- SubmissionsIntroductionGraduates from ABET accredited engineering programs are expected to demonstrate an ability tocommunicate effectively [1-2]. Technical writing skills are particularly difficult to teach andeven more time consuming to assess [3], often limiting the number of opportunities students aregiven to practice and improve throughout their
working in the Office of Undergraduate Education, School of Engineering and Applied Science at SUNY-Buffalo. Previously, he held a position of post- doctoral research associate in the Department of Electrical & Computer Engineering at the University of Nebraska-Lincoln. He formerly held a position of teaching assistant in the Engineering Education Department at Utah State University. He also worked as a laboratory instructor of Telecommunication Engineering at Technological University of Honduras teaching courses of Transmission System to senior students. He received his B.S. in Electrical Engineering from the National Autonomous University of Honduras and his Ph.D. in Engineering Education at Utah State University
internshipprograms as means of building practical industry experience. However, designing courses toinclude cross-disciplinary topics, such as smart grids (SGs), distributed generation or renewableenergy systems (RES) or to keep students from diverse backgrounds engaged can be quite achallenge for instructors14,19-28. In our view, these curricular and pedagogical challenges can beaddressed by bringing research topics, projects and integrated laboratory experiences into powerand energy courses. One of the advantages of these approaches is that the impacts on the existingcurriculum, space, equipment and financial requirements are minimal23-25, 28.This paper describes efforts being undertaken at our university to revise, revitalize and updatethe power
-4 (3 lecture hours-2 lab hour-4 credits)credits course which had 2 one-and-half-hour lectures and one two-hour laboratory per week.Main topics of the course were stress and strain calculations, failure theories resulting from staticloading, fatigue failure resulting from cyclic loading, and design of typical mechanicalcomponents. The textbook used for this course was Shrigley’s Engineering Design [1].According to the syllabus of this course, fatigue theory was covered in two-weeks out of the total14-week-semester. For this course, we had both lecture and laboratory, so we developed andimplemented an integrated active learning approach for teaching fatigue theory which includedfour different exposures to discuss and to explore fatigue theory
from course evaluations, andrecommendations for instructors seeking to implement similar projects in their courses.IntroductionIn recent years, inquiry and problem-based learning within engineering education has gainedmomentum and has proliferated across many engineering programs. A literature review revealednumerous examples of development and implantation of these techniques into classrooms [2, 4-6]. Kolb[7] has written extensively on the model of experiential learning and how this technique enhanceslearning and mastery of engineering concepts. Experiential or laboratory based learning fits within theactive learning dimension within their index of learning styles (ILS) described by Felder and Silverman [7-8]. The basis of ILS is that
current research interests mainly focus on Smart Structures Technology, Structural Control and Health Monitoring and Innovative Engineering Education.Mr. Alec William Maxwell, San Francisco State University Alec Maxwell is currently an graduate student in the School of Engineering at San Francisco State Uni- versity (SFSU). Besides actively conducting research on innovative tools for engineering education in the Intelligent Structural Hazards Mitigation Laboratory at SFSU with Prof. Zhaoshuo Jiang, he also serves the community as the President of the American Society of Civil Engineers for the SFSU chapter.Prof. Zahira H Merchant, San Francisco State UniversityDr. Philip Scott Harvey Jr., University of Oklahoma Scott
. However, Allendoerfer et al. [15] foundthat student perceptions of faculty support are significantly influenced by class size andinstitution type. Astin [16] noted that institution type does not have a strong influence on theeffectiveness of undergraduate education, but that the environment created by faculty andstudents plays a stronger role.The purpose of this study is to examine several educational factors (i.e., institution type, classsize, class meeting time, class length and format, laboratory format, and faculty attributes) thatmay correlate with the amount of knowledge gained in the conceptual understanding ofgeotechnical engineering topics. The study was carried out at six institutions with civilengineering programs: The Citadel