Department at the University of Detroit Mercy. She earned both her M.S. and Ph.D. in Environmental Engineering from the University of Michigan. c American Society for Engineering Education, 2019 Safety Protocols in Civil & Environmental Engineering LaboratoriesAbstractPromoting and achieving safety in academic laboratories for students and researchers is everyinstitution’s goal. To this end, lab practices are constantly reviewed and revised, and safetypolicies are generally documented. For this paper, a survey related to lab safety procedures wasconducted of civil and environmental engineering department heads, with a 25% response ratefor 56 institutions
States Military Academy with a B.S. in Environmental Engineering and graduated from Columbia University with an M.S. in Environmental Engineering in 2016. He teaches Environmental Biological Systems, Environmental Science, Environmental Engineering Technologies, Introduction to Environmental Engineering, Advanced Individual Study I-II, Biochemical Treatment, and Officership.Kimberly Quell, United States Military Academy Kimberly Quell is a Laboratory Technician in the Department of Geography and Environmental Engineer- ing at the United States Military Academy. She is a 2010 graduate of SUNY-College of Environmental Science and Forestry with a B.S. in Environmental Science and is a currently attending graduate school
American Society for Engineering Education, 2019 Inverted Approach to Teach InversionAbstractInversion is one of the most important weather phenomena that determines air quality and istypically covered in courses concerning air pollution. Anecdotal evidence indicates that followingtextbook readings and lectures, students generally express misconceptions about this topic. Addingactive learning to the classroom has been advocated amongst the best practices for highereducation, with physical in-class demonstrations being especially effective for engineeringeducation. The study explores the impact of adding a laboratory demonstration, centered oncreating an artificial inversion layer (with dry ice, smoke bombs, and bubble
Inquiry-Based Green Chemistry into Undergraduate Laboratory Courses via Silver Recycling in a Closed Loop, Multi-course Process” (role as Co-PI). c American Society for Engineering Education, 2019 An interdisciplinary Research-based Education Program for Engaging Plant/Agriculture Sciences, Chemical Sciences and Engineering Students (iREP-4-PACE) at Minority InstitutionsAbstractAn interdisciplinary Research-based Education Program for Engaging Plant/Agriculture sciences,Chemical sciences and Engineering students (iREP-4-PACE) is envisioned with the underlyingintent to improve Tuskegee University's (TU’s) STEM retention through the introduction ofinterdisciplinary, guided, inquiry
of Reading Assignments in Environmental Engineering Education for Effective Learning and Greater Student Engagement in an Era of Innovative Pedagogy and Emerging Technologies1.0 IntroductionSince the dawn of education, educators have been looking for ways to make teachingeffective and it has been a never-ending pursuit. Engineering education is no exception tothis. There have been numerous pedagogical advances such as focusing on students' learningstyles, teaching aids, in-class assessments, and use of more hands-on activities and multi-media, which made education more effective. Most engineering majors, some more thanothers, have dedicated laboratories for hands-on learning of specific
Paper ID #26679Promoting Undergraduate Research and Education through ExtracurricularEPA P3 ProjectsProf. Woo Hyoung Lee P.E., University of Central Florida Dr. Woo Hyoung Lee, P.E. is an assistant professor in the Department of Civil, Environmental, and Con- struction Engineering at the University of Central Florida (UCF). He received his Ph.D. in environmental engineering from the University of Cincinnati in 2009. Prior to joining UCF in 2013, he worked for U.S. Environmental Protection Agency’s National Risk Management Research Laboratory as a post-doc. His primary research area is to develop electrochemical
andweaknesses of the UR program at Rose-Hulman and understand the value of the program forstudent learning relative to other on-campus activities.Literature reviewA growing number of students are seeking research opportunities at Rose-Hulman and literaturesuggests real benefits of UR. These benefits include improving their understanding of the researchprocess and laboratory techniques, and their resilience and ability to persist through failure [3],[4]. Responses to NSF surveys of students participating in sponsored UR opportunities indicatethat research experiences also helped increase student interest in STEM careers and in obtainingan advanced degree [5]. Interviews with undergraduates and faculty mentors at several liberal artscolleges suggest that
. Serving as a model for waterquality and quantity management, students engaged in hands-on experiences using a small-scalewetlands setup in the Cook Laboratory for Bioscience Research at Rose-Hulman Institute ofTechnology. In independent research projects, undergraduate research students measured waterquality parameters including TSS, BOD and nutrients (nitrogen and phosphorus) and optimizedremoval of various contaminants. In the classroom in Environmental Engineering Laboratory,students measured water quality parameters of various water bodies within a watershed andresearched the impacts of excess nutrients on water quality and economies. Students toured theconstructed treatment wetlands and were able to learn directly from a peer who had
(1995), and he earned his M.S. (1998) in environmental health engineering and his Ph.D. (2002) from the University of Illinois, Urbana-Champaign. He has completed postgraduate coursework in Microbial Ecology from the Marine Biology Laboratory, Environmental Health from the University of Cincinnati, Public Health from The Johns Hopkins University, and Public Administration from Indiana University, Bloomington. Oerther is a licensed Professional Engineer (PE) in DC, MO, and OH. He is Board Certified in Envi- ronmental Engineering (BCEE) by the American Academy of Environmental Engineers and Scientist (AAEES), registered as a Chartered Engineer (CEng) by the U.K. Engineering Council, recognized as a Diplomate of the
and surrounding areas, where the first tubular digester was installed in 1999.Fabricio Camacho, a Ph.D. Candidate in Agricultural Engineering at the UGA-CR and GeneralManager and Associate Director of UGA-CR, expanded the use of digesters to several farms inthe region that previously did not treat their agricultural waste. Local farmers implemented ninetubular digesters to varying levels of success. UGA-CR is a valuable in-country partner becauseit hosts approximately 800 students a year, mostly from Costa Rica and the United States, forclassroom, laboratory, and field education and research.3 Agricultural Treatment System AnalyzedAn agricultural waste treatment system in Costa Rica was analyzed in a civil engineering courseat CSU-Chico
laboratory as a place for innovation in education for sustainability for all students,” Educ. Sci., vol. 5, pp. 238–254, 2015.[52] J. E. Dyment, A. Hill, and S. Emery, “Sustainability as a cross-curricular priority in the australian curriculum : A Tasmanian investigation,” Environ. Educ. Res., vol. 21, no. 8, pp. 1105–1126, 2015.[53] J. Schon, K. Eitel, J. Hougham, and D. Hendrickson, “Creating a research to classroom pipeline: Clossing the gap between science research and educators,” J. od Sustain. Educ., vol. 8, no. January, 2015.[54] M. Hacker, D. Crismond, D. Hecht, and M. Lomask, “Engineering for all: A middle school program to introduce students to engineering as a potential social good,” Technol. Eng. Teach
. She has also helped catalogue lead fishnet weights from Uluburun, a late Bronze Age shipwreck, in Turkey. In her free time, she works as the co-founder and CDO of Bezoar Laboratories LLC, a R&D company focusing on probiotic supplements.Mr. Rogelio Casas Jr., Texas A&M University Rogelio Casas Jr. was an ESET student at Texas A&M University and graduated in the Fall of 2018. He was the Project Manager throughout the project and is currently working at General Motors in Austin, Texas as a Software Developer. He plans on continuing his education through hands-on training and a potential Masters in Computer Science.Erika L. Davila c American Society for Engineering Education, 2019
University (1995), and he earned his M.S. (1998) in environmental health engineering and his Ph.D. (2002) from the University of Illinois, Urbana-Champaign. He has completed postgraduate coursework in Microbial Ecology from the Marine Biology Laboratory, Environmental Health from the University of Cincinnati, Public Health from The Johns Hopkins University, and Public Administration from Indiana University, Bloomington. Oerther is a licensed Professional Engineer (PE) in DC, MO, and OH. He is Board Certified in Envi- ronmental Engineering (BCEE) by the American Academy of Environmental Engineers and Scientist (AAEES), registered as a Chartered Engineer (CEng) by the U.K. Engineering Council, recognized as a Diplomate