Paper ID #26126Work in Progress: Science and Engineering for Social Justice: CurriculumDevelopment and Student ImpactCamille Birch, University of Washington Camille Birch is a graduate of the Bioengineering and Computer Science departments at the University of Washington. She developed curriculum concerning the interplay of diversity and ethics for undergrad- uate engineering students at UW and is interested in the power of education to enact change in future generations of engineers. She currently works for Microsoft in the Bay Area.Celina Gunnarsson, Massachusetts Institute of TechnologyDr. Dianne Grayce Hendricks
Paper ID #25087Engagement in Practice: CAD Education via Service LearningDr. David Che, Mount Vernon Nazarene University Dr. Che had worked in the industry for eleven years before beginning his teaching career. He first taught at Geneva College in Pennsylvania and then at Anderson University in Indiana before joining Mount Ver- non Nazarene University (MVNU) in Mount Vernon, Ohio, in 2016. He is now Chair and Professor of Engineering at MVNU. His research interests include CAD/CAM/CAE, automotive engineering, man- ufacturing engineering, mechanical design, engineering mechanics, engineering education, engineering ethics
approach to give students the opportunity to apply engineering principles at the smallestscales of BME (Bioinformatics), at the tissue level (Biomaterials Design and QuantitativeHuman Physiology), at the macroscale (Biomechanics) and, finally, to integrate principles fromall scales into the design of medical devices (Medical Devices) [4]. The objective of thiscurriculum is to provide students with a toolkit of important BME skills to make themcompetitive for industry careers as well as graduate school. An emphasis on design and project-based learning will help our students develop their communication skills, critical thinking, andtheir ability to work in teams. We plan to weave in issues of social responsibility and ethics intoour BME curriculum
and Civic Responsibility Harvard Aesthetics, culture and Interpretation, History, Society, Individual, Social Science and University Technology, Ethics and Citizenship, Art and Humanities, Social Sciences, Natural Sciences or Engineering and Applied Sciences, Empirical and Mathematical Reasoning Stanford Thinking and Behavior Methods, Effective Thinking, Writing and Rhetoric, Language University Columbia Contemporary Civilization, Literary Humanities, University Writing, Art and Humanities, University Music and Humanities, Science Frontier, Science Compulsory, Global Core Compulsory, Foreign Language Compulsory, Sports Compulsory Chicago Humanities, Foreign Languages, Mathematical
Paper ID #27424Toward a Globalized Engineering Education: Comparing Dominant Imagesof Engineering Education in the United States and ChinaDr. Qin Zhu, Colorado School of Mines Qin Zhu is an Assistant Professor in the Ethics Across Campus Program and the Division of Humanities, Arts & Social Sciences at Colorado School of Mines, where he is co-directing the Daniels Fund Program in Professional Ethics Education that provides support for faculty to integrate ethics into applied science and engineering curricula. Qin serves as a graduate faculty member in the Master’s Program in Natural Resources and Energy Policy at
Process (tools foreffective meetings); and Analytical Problem Solving (brainstorming, list reduction andevaluation criteria). Over the decades, the EF program adapted to meet the changing needs ofundergraduate students, with options for shorter sessions and the addition of a module onEffective Presentation Skills in the early 2000s.In the 2010s, the EF program directors began to explore opportunities to expand the curriculumto address new challenges. A new partnership in 2015 led to the addition of two new modules:Equity, Inclusion & Engineering Ethics; and Research Mentoring. In 2017, Tau Beta Pi partneredwith several other organizations in a successful proposal to the National Science Foundation todevelop updated training materials focusing
the ABET GeneralCriterion 3: Student Outcomes, General Criterion 5: Curriculum, and the Program Criteria forCivil and Similarly Named Engineering Programs (CEPC). The comparisons are provided inTables 1 through 21. For those outcomes that include both the cognitive domain and theaffective domain (Tables 15 Sustainability through 21 Ethical Responsibilities), both of theoutcome statements are provided in the table. Following each table is a discussion of theCEBOK3 outcome and the relevant ABET accreditation criteria, along with a recommendationfor “closing the gap” when it is determined that the ABET criteria only partially addresses ordoes not address the CEBOK3 outcome. It should be noted that the comparisons, ratings, andrecommendations are
Skill Self and Peer Evaluation Thu, 06/14/18 100 1000 Participation Technical Contribution % of class meetings Factor Classroom Participation 5 80+ (18+/22) 100% Ethics + Conduct 10 75-80 (17/22) 94% Resume’ Submission 10 70-75 (16/22) 86% Progress Reports 5 65-70 (15/22) 81% Individual Contribution + 17 60-65 (14/22) 77% Contract 55-60 (13/22
was to keep the students fromhurting their own systems or putting themselves in danger of breaking a law (for example,hacking into a private or government system), while also ensuring that the students are operatingin a realistic and contemporary environment. This second point is especially difficult as studentsmust see cybersecurity outside of small exercises and apply their skills in a realistic manner.The authors will review the types of projects that students have completed in the last four years atWentworth Institute of Technology. These descriptions will include details of the projects and thetechnical and ethical challenges that accompanied each. These tips and best practices are intendedto provide instructors with a starting point as
Ethics in the Affective Domain Level Example Receiving Individual reads a book passage and recognizes the relationship to ethical behavior. Responding Individual participates in a discussion about the book, reads another book by the same author or another book about ethical behavior, etc. Valuing The individual demonstrates acceptance of the concept by voluntarily attending a lecture on ethical behavior. Organization The individual organizes a study session for other students on topics related to ethical behavior. Characterization The individual is firmly committed to the value of
adaptability inprofessional life. What is more, he introduced interesting questions about automation and labor,some that could help students engage the ethical and moral dimensions of robotics. Yet, thenarrative he constructed is ultimately from the perspective of the business owner who profitsfrom technological unemployment. It may be the case that questions about the negative intendedand unintended consequences of STEM might be difficult for teachers to navigate and may evenappear contradictory if the goal is to inspire entry into affiliate careers.Considering her students’ age and interests, Deborah proposed that an older student or a roboticsteam might be appropriate guest speakers. She explained her rationale, I would probably have another
attributes cluster for a new engineer in engineering practice asperceived by key engineering stakeholders. The data consisted of perceived similarities between eachpossible pair of graduate attributes collected from engineering student, faculty and industrystakeholders. Multidimensional scaling analysis showed that the 12 graduate attributes can beconceptualized as four clusters, which we have suggested be titled, Problem Solving Skills,Interpersonal Skills, Ethical Reasoning, and Creativity and Innovation. These findings, supported bythe relevant literature, highlight the need to further explore how engineering competencies cluster inpractice to add empirical support for program changes aimed toward educating the whole engineer.1. Introduction and
, including the ethics of science and technology, environmental science, technology and decision-making, and radiation, health, and policy. Her research has ranged over risk assessment and communication, green design, bioelectromagnetics, education in general, and pedagogy for modern-day literacy, such as scientific, environmental, and global literacy, and engineering ethics. Dr. Nair chaired the national Global Learning Leadership Council of the American Association of Col- leges & Universities (AAC&U) from 2010 to 2013 and is currently a member of the Global Advisory Committee. She is also on the advisory panel of the Center for Engineering, Ethics & Society (CEES) of the National Academy of Engineering
prepare undergraduateengineering students to become managers and leaders of teams in the first years of their careers,but also to inspire them to ultimately chart a path toward becoming leaders at the top oforganizations. There are two facets of the revamped RCEL 2.0 certificate experience that willenable this. First, RCEL 2.0 will still offer a rich, focused suite of fundamental engineeringleadership development courses. A major addition to the fundamental leadership curriculum thatwas not in the prior one is the inclusion of new competencies in project management andengineering ethics [2].The second facet of the certificate will require each student to choose one of four career directionshe/she is likely to pursue after graduating from the
and based on active learning activities. More recently, she started work on engineering education research that aims to effectively incorporate socio-technical thinking in required technical courses. Her discipline research is focused on the production of stabilized biosolids, its use as a fertilizer and its impact on environmental pollution concerning organic contaminants. She recently has started work on Amazonic mercury contamination due to illegal mining.Dr. David Tomblin, University of Maryland, College Park David is the director of the Science, Technology and Society program at the University of Maryland, Col- lege Park. He works with STEM majors on the ethical and social dimensions of science and technology
Confucianphilosophical influence on organizational culture; this affects how Chinese leaders operatebusinesses and view business ethics. Chen [17] concluded that understanding specific leadershipand followership skills led to better techniques that were specific to China and that make for asuccessful investment for those business leaders who established an operation in China. Similarawareness is useful when operating in MENA context. Global Organizations: Since the 2008 financial crisis of the United States, economicrecovery in the MENA region helped companies to expand business activities. The total valuefrom disclosed business agreements or transactions domestically rose to 54% of all deals at acombined value of $2.2 billion, whereas Qatar reached 21
career in information technology to developadditional cybersecurity skills to use in their current position or to prepare them for advancementinto a new position. Alternately, it could serve as a way to demonstrate the knowledge andexperience required to allow someone to switch from a career in a completely different field intoinformation technology and cybersecurity.The suggested completion plan for the certificate is: • CSCI 603 – Defensive Network Security • CSCI 604 – Ethical Hacking • CSCI 609 – Cybersecurity Law and Policy • One additional courseThere are a number of options for the final course. These include, at NDSU: • CSCI 610 – Computer Crime and Forensics • CSCI 669 – Network Security • A computer science
Paying someone else to take an exam/write a paper for you Storing answers to a test in a calculator or Personal Digital Assistant (PDA) Working in groups on Web-based quizzesOne issue with academic dishonesty is that students and instructors have different definitions ofcheating. Therefore, it is important for institutions to define what constitutes cheating tostudents. In general, it is believed that students who cheat in college are more likely to shoplift,cheat in income taxes, abuse harmful substances, and engage in un-ethical behavior in theworkspace. Students that cheat in high school also do it in college [1].Among the different disciplines, Business and Engineering students are among the most likely
employees’ well- being, professional development and performance. Her work has been published in peer reviewed journals and presented in several international conferences.Dr. Gunter Bombaerts, Eindhoven University of Technology Gunter Bombaerts is Assistant Professor for Philosophy and Ethics of Technology at Eindhoven Univer- sity of Technology, the Netherlands. His research fields include ethics in engineering education (moti- vation, deep learning, competence measurement), comparative ethics and questions concerning applied ethics in the field of energy ethics, in particular on participation and innovation. He is coordinating the TU/e USE program and is teacher of USE courses (amongst which the USE basic course on History
energy industries, with a focus on cor- porate social responsibility, social justice, labor, and gender and 2) engineering education, with a focus on socioeconomic class and social responsibility. She is currently completing a book manuscript on the intersection of engineering and corporate social responsibility. She is the author of Mining Coal and Un- dermining Gender: Rhythms of Work and Family in the American West (Rutgers University Press, 2014), which was funded by the National Science Foundation and National Endowment for the Humanities. In 2016 the National Academy of Engineering recognized her Corporate Social Responsibility course as a national exemplar in teaching engineering ethics. Professor Smith holds a
has served as the Associate Chair for Undergraduate Education in the CEAE Department, as well as the ABET assessment coordinator. Professor Bielefeldt was also the faculty director of the Sustainable By Design Residential Academic Program, a living- learning community where interdisciplinary students learn about and practice sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in engineering education include service- learning, sustainable engineering, social responsibility, ethics, and diversity.Dr. Kevin G. Sutterer P.E., Rose-Hulman Institute of Technology Kevin Sutterer is Professor and Department Head of Civil Engineering at Rose-Hulman Institute of Tech- nology in Terre
engineering Ph.D. studentsrequires relevancy to the research field of students. Among other inferences, we see that giventhe time-strapped situation of most Ph.D. engineering students, instruction that relates closely toin-progress work is meaningful and thus, an anchor to attention and improvement. To improvefluency and flow, in writing and speaking, a topical focus on ethical issues has served to linkspecialized technical information to broader social communication that ultimately helps connectsstudents to greater communication opportunities.IntroductionPh.D. engineering students and faculty alike understand the critical need to communicateeffectively in order to lead research projects, teach, mentor, write papers and proposals, and togenerally
interdisciplinary students learn about and practice sustainability. Pro- fessor Bielefeldt’s research interests in engineering education include service-learning, sustainable engi- neering, social responsibility, ethics, and diversity. She is a licensed P.E.Dr. Brock E. Barry P.E., U.S. Military Academy Dr. Brock E. Barry, P.E. is Professor of Engineering Educaiton in the Department of Civil & Mechanical Engineering at the United States Military Academy, West Point, New York. Dr. Barry holds a Bachelor of Science degree from Rochester Institute of Technology, a Master of Science degree from University of Colorado at Boulder, and a PhD from Purdue University. Prior to pursuing a career in academics, Dr. Barry spent 10-years
literature relevant to their new project. Course 1 culminates in a written literaturereview. The second course, taken in year 2 of graduate study, is for students who have generatedsome findings and are preparing to disseminate their work in a professional venue. Course 2focuses on writing in the standards of the discipline, using CT to guide the writing process. Itculminates in a major but flexible writing assignment proposed by the student and advisor.Course development began in 2010 after UofSC established a graduate program in BiomedicalEngineering. The graduate curriculum specified coursework under the general heading ofprofessional development and ethics, from which the subject courses evolved. While the coursesare required for graduate
) e Problems engineering problems 6. Professional/ an understanding of professional and ethical Understanding f Ethical responsibility (2) 7. Communication an ability to communicate effectively Ability (3) g 8. Engineering the broad education necessary to understand Understanding h Impact the impact of engineering solutions in a global (2) and societal context 9. Life-long a recognition of the need for, and an ability to Ability (3) i Learning engage in life-long learning 10. Contemporary a knowledge of contemporary issues Recognition j Issues
design thinking is founded on developing empathy is critical: empathy requires a fullunderstanding of the societal context in which all stakeholders operate; empathy is distinctfrom “sympathy” which could yield the problematic “need my help” framing; and empathyhas been shown to be enhanced through the humanities and social sciences [17]. Designprojects in the first year have been shown to develop empathy and to help students developan emotional understanding of stakeholders’ interests [18]. In our view, empathy requires anddictates an ethical approach to design, as the potential risks and rewards for all conceivablestakeholders must be considered. During a class period early in the semester, we involvestudents in a 75-minute design thinking
demonstration. The connection between the quote and the text drawn comes from the role ethics play in science. The quote comes as Victor has realized the consequences of animating his creation. Ethics are important when researching in science because there are things that should not be done. There has to be boundaries for research so that whatever is being researched is used for the right reasons. Atomic technology is a perfect example of a double edged sword. On one hand, atomic energy is clean, medicines using radioactive markers are extremely useful in research, and may be useful in making discoveries in astronomy. However, the original research had a much more violent use. By splitting an atom to create a nuclear chain
on Undergraduate Research, undergraduate research is defined as “aninquiry or investigation conducted by an undergraduate student that makes an originalintellectual or creative contribution to the discipline [1].” As stated in literature, undergraduateswho conduct research show improvements in thinking independently, thinking critically, puttingideas together, solving problems, analyzing data, analyzing literature, interpreting researchfindings, conducting ethical research, writing and communicating [2-9]. Literature also assertsthat it is rare for students to have enough opportunity to gain higher-order thinking skills fromtheir undergraduate research experiences [10].Students involved in undergraduate research also report outcomes that may
of Science degree, a graduatecertificate and a cybersecurity option as part of the department’s masters’ and doctoral degrees inboth computer science and software engineering. All are designed, initially, to be flexible andwill be refined over time. Each will now be discussed.The department issued recognition requires students to take nine credits of cybersecuritycoursework, in addition to meeting the other requirements for the Bachelor of Science degree.The department issued recognition can also be issued to those not pursuing Computer Sciencedegrees, in very special cases. The recommended fulfillment of the recognition includes takingCSCI 403 – Defensive Network Security, CSCI 404 – Ethical Hacking and one additionalcourse. Options for
learn about and practice sustainability. Biele- feldt is a licensed P.E. Professor Bielefeldt’s research interests in engineering education include service- learning, sustainable engineering, social responsibility, ethics, and diversity. c American Society for Engineering Education, 2019 Education for Sustainable Civil Engineering: A Case Study of Affective Outcomes among StudentsAbstractIt is important that civil engineering students are educated about sustainable and resilient design.The updated Civil Engineering Body of Knowledge Third Edition (CEBOK3) has added affectivedomain outcomes for sustainability. This acknowledges the fact that while engineers may havethe