to process and identify connections with environmental, ethical, and societal factors.The components of an effective service learning reflection can be described by the 5 C’s:continuous, connected, challenging, contextualized, and coached [11]. The reflection should becontinuous throughout project, that is, it should happen before, during, and after the experience.The connection component should link the service experience to the course curriculum. Thereflection should challenge students to engage with current issues, while also contextualizing thework in a way that fits the specific project. Finally, coaching is necessary for supporting studentsintellectually, emotionally and academically.Student reflections can also be useful tools for the
, backgrounds,and experience levels [5]. These activities comprising contemporary organizational life in theengineering industry make the presence of conflict ubiquitous [7] and the pressure tosuccessfully negotiate that conflict enormous [8]. Given the constant presence of conflict inorganizations [9], [10], it is no surprise that ABET emphasizes constructive communicationskills and effective team collaboration, of which conflict negotiation is an integral component, intheir student learning outcomes [6]. Acknowledging the constructive qualities of conflict negotiation for organizations andtheir members, creating and implementing conflict negotiation workshops for organizationalmembers can be an advantageous endeavor for organizations [11], [12
systems engineering (SE) concepts during their undergraduate education.Although courses dealing with product design and development are an excellent choice tointroduce basic ST and SE concepts, mechanical engineering undergraduate programs seldomoffer more than one or two of those courses in their curriculum. Thus, to gradually develop theST and SE skills of the students during their undergraduate education, it is necessary to identifyadditional courses throughout the curriculum in which selected ST and SE concepts can beincorporated, starting in the freshman year. To that effect, many universities offer a freshman-level introduction to mechanical engineering course that can be a good a choice to explore howto incorporate basic ST and SE concepts
leave the coursehaving a better understanding of how important the role of communication and empathy isthroughout the design process. Once ENGR 180 is designated as an FC course, this will becomea valuable course for not only engineering students, but also students from other majors.References[1] National Academies of Sciences, Engineering, and Medicine 2018. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education: Branches from the Same Tree. Washington, DC: The National Academies Press. https://doi.org/10.17226/24988.
or presentations. At Rose-Hulman, Sriram has focused on incorporating reflection, and problem based learning activities in the Software Engineer- ing curriculum. Sriram has been fundamental to the revamp of the entire software engineering program at Rose-Hulman. Sriram is a founding member of the Engineering Design program and continues to serve on the leadership team that has developed innovative ways to integrate Humanities, Science, Math, and Engi- neering curriculum into a studio based education model. In 2015, Sriram was selected as the Outstanding Young Alumni of the year by the School of Informatics and Computing at Indiana University. Sriram serves as a facilitator for MACH, a unique faculty development
of future STEM generations.IntroductionThe changing landscape of academia presents challenge in ensuring graduate trainees areproficient in the development of professional skills outside of the research environment [1]. Thisincludes capacity for knowledge translation of research outcomes to a non-expert audience,curriculum development, and effective project management [2]. Consequently, in preparingfuture faculty to assume academic roles and responsibilities successfully, post-secondaryinstitutions have shifted greater focus to providing teaching development programs for traineeprofessional development [3]. This is particularly important given the competitive nature ofsecuring an academic position. With increasing diversity of academic
deterring and a major barrier to retention andsuccess in the profession.[5-10]Several factors have been identified as key challenges: (a) the lack of exposure to engineering orcomputer science as fields of study or as career opportunities [11], (b) the lack of professionalidentity (inability to see oneself as a professional) [7], (c) an impaired sense of belonging [12,13], and (d) the lack of self-efficacy (how well one can execute a course of action to deal with aprospective situation) [14]. Adding to the challenge is the rigor of engineering curriculum whichsubstantially contributes to high dropout rates from engineering [15], averaging at 50%, andranging from 60 to 67% for minorities [12, 16, 17]. These numbers are strongly driven by highfailure
positive impact based on regularassessment results, which include overwhelmingly positive student participant feedback.Changes to the program continue to be made based on student participant needs and interests,with the expectation that they will continue to enrich and enhance their academic andprofessional experience.The EFLC offers a unique college residential living experience through a holistic and integratedapproach to the freshmen experience, and is designed to facilitate students’ transition into theCollege and University communities. The program started in 2002 with 60 students, and quicklygrew to capacity at 220 students, or approximately one third of the entering COE class. TheEFLC is also an integral component of UNC Charlotte’s PFS
development, as wellas a network simulator to provide students with a technology development environment fornetwork design, troubleshooting, and protocol modeling in a simulated environment. Followingthese considerations, this paper presents the way the Data Network Communications course wasupdated as part of an overall curriculum revision in an Electrical Engineering Technologyprogram. The paper discusses the course topics, the course objectives, and the software toolsintroduced to support the hands-on activities in the class, including the Wireshark software tool,for network troubleshooting, profiling network traffic and analyzing packets. The paper alsopresents the way the course was received by students, as well as lessons learned after the
lastsummer, 70 high school students participated in the week-long cybersecurity summer campevent at North Dakota State University in Fargo, North Dakota.The cybersecurity summer camp curriculum is facilitated by junior counselors (students whohave completed high school that have a strong interest in cybersecurity), counselors (collegestudents with cybersecurity experience), and university faculty & staff. This paper studies theimpact of having counselors and junior counselors integrated into the cybersecurity summercamp experience and evaluates the impact that being a counselor has on the students thatparticipate in that role. These impacts facilitate cybersecurity community engagement.1. IntroductionThe need for quality cybersecurity education
Paper ID #31125Continuing to Promote Metacognitive Awareness in a First-Year LearningStrategies CourseDr. Elizabeth Anne Stephan, Clemson University Dr. Elizabeth Stephan is the Director of Academics for the General Engineering Program at Clemson University. She holds a B.S. and a Ph.D. in Chemical Engineering from the University of Akron. Since 2002, she has taught, developed, and and now coordinates the first-year curriculum. As the lead author of the ”Thinking Like an Engineer” textbook, currently in its 4th edition, she has been the primary author team–member in charge of the development of the MyEngineeringLab
. Dr. Friess’ research background includes fluid mechanics, composite materials, performance optimization, and global engineering education. Cur- rent research interests focus on engineering education, in particular curriculum integration and innovative pedagogical methods. c American Society for Engineering Education, 2020 Lighter than air vehicles as aerospace focused projects in a mechanical engineering capstone sequenceAbstractMechanical engineering Senior Design projects often extend to cover aerospace engineeringtopics. Due to strong student interest, unmanned flight vehicles in the form of the AIAA DFBcompetition were introduced into Senior Design at the University of
learning strategies, and positive habits of mind.Dr. Elizabeth Anne Stephan, Clemson University Dr. Elizabeth Stephan is the Director of Academics for the General Engineering Program at Clemson University. She holds a B.S. and a Ph.D. in Chemical Engineering from the University of Akron. Since 2002, she has taught, developed, and and now coordinates the first-year curriculum. As the lead author of the ”Thinking Like an Engineer” textbook, currently in its 4th edition, she has been the primary author team–member in charge of the development of the MyEngineeringLab system.Matthew K. Miller, Clemson University Matt Miller is a Senior Lecturer in the General Engineering Program at Clemson University. His back- ground in
of Theater and Dance (SoTD). After this experience, Dr. Akc¸alı began exper- imenting with the use of arts-integrated teaching and learning methods in engineering education. Since 2014, she has been affiliated with the Engineering Innovation Institute at UF and teaches a course entitled ”Divergent Thinking” that she specifically designed for engineering students. While the traditional engi- neering curriculum and pedagogy rely and place an emphasis on the development of convergent thinking skills of students for the delivery of discipline-specific domain knowledge, Dr. Akc¸alı challenges and invites the students in her class to think differently and develop their divergent thinking skills.Prof. Wayne C.W. Giang
, community engagementIntroductionThe benefits of community engagement for the education of engineering students are widelyknown and described [1-3]. Typically, universities offer academic spaces for community servicein the curriculum of certain programs. In the case of the Electronic Engineering (EE) major of thePontificia Universidad Javeriana University in Colombia, there is a course called University SocialProject (Proyecto Social Universitario, PSU). During more than 30 years of different iterationsand changes, this course has promoted the commitment and responsibility of EE students withvulnerable populations and institutions that the university has built a partnership with [4]. Its goalis to generate in students an attitude of reflection and
Justin Chau is a senior in the Cooperative Electrical Engineering Program between Missouri State Univer- sity and Missouri University of Science and Technology. Justin is interested in learning about computer engineering, electronics, and signal processing and likes to work on projects in these areas outside of class.Mr. Matthew Neal Mutarelli, Matthew Mutarelli, is a student in the Department of Electrical and Computer Engineering at the Missouri University of Science and Technology and Missouri State University’s Cooperative Engineering Program. His research interests include Integrated Systems , Digital Logic, and Control systems.Dr. Rohit Dua, Missouri University of Science and Technology ROHIT DUA, Ph.D is an
State University Chico in 2015 as an Assistant Professor. Dr O’Connor teaches a myriad of courses including: Dynamics, Materials, Thermodynamics, Machine Design, and Vibrations. In addition, he is the faculty advisor to both Chico State Rocketry and SAE Mini Baja student clubs. c American Society for Engineering Education, 2020Electric Ceiling Hoist: A Semester Project with Competing Forces to Enhance Student Learning in Machine DesignAbstractMechanical Engineering Design (i.e., Machine Design) is a pivotal course in any MechanicalEngineering or Mechatronic Engineering curriculum. This course marks the transition fromlearning fundamental mathematics and science to applying them for
Education. Morgan, J. R., Moon, A. M., & Barroso, L. R. (2013). Engineering better projects. In R. M. Capraro, M. M. Capraro, & J. R. Morgan (Eds.), STEM project-based learning: An integrated science, Part of a DIME map and displayed textbook text technology, engineering, and mathematics (STEM) approach (2nd ed., pp. 29-39). Rotterdam, The Netherlands: Sense. Publishers.The DIME Map
is an assistant professor at Harvey Mudd College. His research interests include experi- ential and hands-on learning, and integrating mechanical, chemical and quantum devices into circuits and communication links. c American Society for Engineering Education, 2020 A Survey of the Proportion of Classes in Undergraduate Engineering Curricula that Include LabsAbstract -- This research paper describes the results of a systematic review of engineering coursecatalogs and program requirements that sought to answer the question, “How many laboratoryclasses does an engineering student take?”. This study is motivated by two observations: first,literature suggests that laboratories have
country.MethodsTo develop team-based learning curriculum and its evaluation in Japanese engineering education,we first replicated Ohashi’s survey [2], “What is an Engineer?.” The answers to the questionnairereflect the sociocultural value of engineering in Japan from the perspective of future engineers. Morespecifically, we asked a hundred freshmen in the Department of Mechanical and SystemsEngineering at Kogakuin University, the following question, “Who do you associate with the word‘Engineer’? Please write down the names of three people. If the person is not popular, please add abrief explanation.”In response to the lack of interdisciplinarity in the pipelines of our default educational system, wedeveloped a high-quality interdisciplinary curriculum for
Paper ID #29424Evaluating a new second-year introduction to chemical engineering designcourse using concept mappingMatheus Oliveira Cassol, University of British Columbia, Vancouver Matheus is an undergraduate student in the Department of Chemical and Biological Engineering at The University of British Columbia. His work focuses on improving engineering education using technol- ogy and innovative analysis methods. Matheus’ goal is to follow a research career, using engineering knowledge to move society towards a greener future.Dr. Jonathan Verrett, University of British Columbia, Vancouver Jonathan Verrett is an Instructor in
Paper ID #31713A Course in the Human Factors Approach to Construction Engineering andManagementDr. Kelli R. Kopocis-Herstein, University of Nebraska - Lincoln Dr. Kelli Kopocis-Herstein is an Industrial Engineering and occupational safety and health scientist. She is currently an assistant professor of practice in the College of Engineering at the University of Nebraska - Lincoln (UNL) and holds a courtesy appointment at the University of Nebraska Medical Center. Dr. Kopocis-Herstein teaches university level courses in research methods, human factors, productivity, occupational safety and health, ergonomics, engineering
Paper ID #29649Faculty Development Mini-Modules on Evidence-Based Inclusive Teachingand Mentoring Practices in EngineeringDr. Sarah Ilkhanipour Rooney, University of Delaware Sarah I. Rooney is an Assistant Professor and Director of Undergraduate Studies in the Department of Biomedical Engineering at the University of Delaware. She seeks to bring evidence-based teaching prac- tices to the undergraduate curriculum. She received her B.S.E. and M.S.E. in Biomedical Engineering from the University of Michigan (Ann Arbor) and her Ph.D. in Bioengineering from the University of Pennsylvania (Philadelphia).Prof. Joshua A Enszer
the University of British Columbia, Vancouver, BC, Canada in 2013. He was a Postdoctoral Scholar at Davis Millimeter- Wave Research Center (DMRC) at University of California, Davis from 2014 to 2016. Since July 2016, he has joined the Department of Electrical and Computer Engineering at University of California, Davis as an Assistant Professor of Teaching. His educational research interests include curriculum innovation for teaching circuits, electronics and control systems, project-based learning, and the use of technology in teaching and learning. American c Society for Engineering Education, 2020Work in Progress: Experiential Modules using Texas
provides a means for creative students to express lesson content creatively;however, assessment bias, selection bias, and the inherent difficulty in assessing creativity doesnot allow us to draw conclusions about the creativity of engineering students in any absolutesense from the collected data; (2) incorporating an emphasis on freehand sketching into theengineering curriculum could have positive effects toward developing creativity and pictorialcommunication skills; (3) there was evidence in the data suggesting that the sample populationsexamined in the study are experiencing degradation in creativity between sophomore and seniorlevel coursework, which was an idea expressed in the literature; (4) the sketch creativity scoresare higher when it is
only 5 studies that used qualitative methods, one ofwhich used a case study approach to study student experiences in an extracurricular makerspace(O'Connell, 2015). This review also pointed out that while empirical research is focusing onstudent outcomes and curricular integration, many of the reports on academic makerspaces focuson the equipment and physical space of the makerspace itself (i.e., 18 out of 22 reports cited).While qualitative methods are being used as a methodology to study experiences withinmakerspaces, reports on systems and space are still happening. For example, as recently as 2019at the 2019 International Symposium on Academic Makerspaces, Wildbolz and colleagues(2019) shared best practices for managing access to space
research aims to improve the design of educational experiences for students by critically examining the work and learning environments of practitioners. Specifically, she focuses on (1) how to design and change educational and work systems through studies of practicing engineers and educators and (2) how to help students transition into, through and out of educational and work systems.Dr. Cheryl A Bodnar, Rowan University Dr. Bodnar is an Associate Professor in the Experiential Engineering Education Department at Rowan University. Her research interests relate to the incorporation of active learning techniques such as game- based learning in undergraduate classes as well as integration of innovation and entrepreneurship
computational thinking in engineering and mathematics: A work in progress examining the development and validation of a non-programming assessment This work in progress presentation chronicles the development and validation of an assessment thatmeasures student computational thinking skills (CT). As evidence of the growing need to integrate CT intoproblem-solving, particularly for ambiguous, open-ended problems, the International Society forTechnology in Education created CT Competencies that coincide with the K-12 Computer ScienceFramework. In its simplest form, CT is “procedural thinking” [1] but over the past 25 years its definition hasgrown and evolved matching that of computers [2]. Definitions vary among researchers
: Analysis of a curriculumdesigned and implemented", in American Society for Engineering Education, Pittsburgh, PA,USA, 2008.[6] D. Cuperman and I. M. Verner, "Fostering Analogical Reasoning Through Creating RoboticModels of Biological Systems", Journal of Science Education and Technology, vol. 28, no. 2,pp. 90-103, 2019.[7] G. Brockington, M. Schivani, C. Barscevicius, T. Raquel and M. Pietrocola, "Usingrobotics in kinematics classes: exploring braking and stopping distances", PhysicsEducation, vol. 53, no. 2, 2018. Available: 10.1088/1361-6552/aaa09e.[8] A. Ortiz, "Examining Students' Proportional Reasoning Strategy Levels as Evidence of theImpact of an Integrated LEGO Robotics and Mathematics Learning Experience", Journal ofTechnology Education
Technical College, where he also serves as the director of the Center for Renewable Energy Advanced Technological Education (CREATE). Dr. Walz is also an adjunct professor of Civil and Environmental Engineering at the University of Wiscon- sin. He has served as teacher for the UW Delta Center for Integrating Research, Teaching and Learning, and has mentored several graduate students who completed teaching internships while creating new in- structional materials for renewable energy and chemical education. Dr. Walz is also an instructor with the Wisconsin K-12 Energy Education Program (KEEP), delivering professional development courses in energy science for public school teachers. Dr. Walz is an alumnus of the