design.MethodsIn capstone design course, ENGR4520 Design and Manufacturing of Biomedical Device andSystem at Robert Morris University, students were divided into groups (4-5 students per group)and selected their own project. The objective of the course and project were to understandDesign Control3, design, implement, and fabricate the prototype of a medical device thataddresses current market need. Student projects were in many different areas includingorthopedic implants, prosthetics, biomaterials, instrumentation and etc. Each group was requiredto produce a working prototype of the proposed design to assess the functionality of the device.For the groups who selected an orthopedic medical device, such as total joint replacement andtrauma implant
clinical trials, economics, ethics, and regulatorystrategies. Throughout the second year, students will continue working on their research project,with the culmination of the second year being a summer clinical or industrial immersion relevantto the project. In addition to immersion experiences, we are planning tracks: research,entrepreneurship, professional school, and industry; while these are at early stages indevelopment, they are being developed to integrate with other campus activities.Beginning junior year, students will continue undergraduate research while being extensivelytrained in engineering design, in contrast to traditional education which focuses primarily ondesign in the senior capstone course. The coursework for this year is not
guided problem through the application of intradisciplinary technical skills. In Phase 3, thejuniors start on a more complex project that typically spans into senior year and Phase 4:capstone design [1-4].Over the last five offerings of BME 201, this course has evolved to cohesively combine threecomponents (lecture, lab and a design project) into modules throughout the course that representthe field of BME, both from a curricular and industry standpoint. To effectively teach thestudents in the course and maintain current course content, we utilize a three tiered instructionalapproach: instructors, three teaching assistants, and up to 20 undergraduate student assistants, allbringing their educational and industry experiences to the course. The
biomedical problems. During biomedical design, a range ofstrategies can be used to identify a problem and to generate and evaluate solutions. At ColumbiaUniversity, we have an established program for teaching biomedical design to undergraduateswhich culminates in our capstone ‘Senior Design’ course. However, no specified designexperience exists for terminal degree BME Master’s students. Design courses are traditionallytaught utilizing a textbook, lectures, and a team design project, with often limited time forinteractions between and among teams and instructors in the classroom. We also recognized thatthe background and educational and professional goals of undergraduates and graduate studentsare unique. Therefore, we saw a valuable opportunity to
, Urbana-Champaign Dr. Marcia Pool is a Lecturer in bioengineering at the University of Illinois at Urbana-Champaign. In her career, Marcia has been active in improving undergraduate education through developing problem-based laboratories to enhance experimental design skills; developing a preliminary design course focused on problem identification and market space (based on an industry partner’s protocol); and mentoring and guiding student teams through the senior design capstone course and a translational course following senior design. To promote biomedical/bioengineering, Marcia works with Women in Engineering to offer outreach activities and is engaged at the national level as Executive Director of the biomedical
Paper ID #12283Bioengineering Global Health: Design and Implementation of a Summer DayCamp for High School StudentsDr. Dianne Grayce Hendricks, University of Washington Dr. Dianne G. Hendricks is a Lecturer in the Department of Bioengineering at the University of Wash- ington. She earned a BS in Molecular Biology at the University of Texas at Austin and a PhD in Genetics at Duke University. Dr. Hendricks’ teaching interests at the University of Washington include develop- ing and teaching introductory and honors courses in bioengineering, tissue and protein engineering lab courses, and capstone projects. She is committed
include primingstudents for subsequent ‘design spine’ courses and their final-year BME capstone experience, anddeveloping interactive project-based teaching at scale. The two faculty who teach this course(Frow, Smith) have co-developed the content over the past two years; we also meet biweeklyduring the academic year with faculty members teaching the other BME ‘design spine’ courses, tocoordinate program content and learning outcomes across courses.Our semester-long course focuses on global healthcare markets and device design for low-resourcesettings. The course revolves around an open-ended, team-based design project (Smith et al. 2005).A core aim is to foster curiosity and creativity1 in students’ first formal experience of engineeringdesign
bioengi- neering, tissue and protein engineering lab courses, bioengineering ethics, leadership, and bioengineering capstone writing and design courses. She is committed to enhancing diversity and inclusivity in engineer- ing, and creating opportunities for undergraduate students to engage in K-12 educational outreach. Dr. Hendricks has over a decade of experience leading educational outreach and summer camp programs at both Duke University and the University of Washington. c American Society for Engineering Education, 2017Work In Progress: Toy Adaptation in Undergraduate Education and Outreach - An Initial Examination into Participant Experience and PerceptionsService learning is a
the UIC Innovation Center. Prior to joining the faculty at UIC, she worked in new product development for medical devices, telecommunications and consumer products. She co-teaches both bioengineering capstone design courses, including the longstanding core senior design sequence and the recently launched interdisciplinary medical product development course. She also serves as co-Director of the Freshman Engineering Success Program, and is actively involved in engineering outreach for global health. Miiri received her Ph.D. in Bioengineering and M.S. in Mechanical Engineering from the University of Illinois at Chicago and a B.S. in General Engineering from the University of Illinois at Urbana Champaign.Dr
, &Lee (2006) found that nearly all workplace problems are complex and ill-structured. Studentsoften only encounter complex ill-defined problems at the end of their four year engineeringprogram and enter the workforce without these critical skills requiring more on the job training.3How can we prepare students to solve these ill-defined complex problems that they willencounter as working engineers? The Vanderbilt-Northwestern-Texas-Harvard/MIT (VaNTH)Engineering Research Center attempted to answer this question in a Biomedical Engineeringcontext. The VaNTH project designed a biotransport engineering curriculum to help studentsdevelop innovation and efficiency.4,5,6 Innovation was operationalized as the adaptive ability toperform well in