Paper ID #39195Curriculum Development in Renewable Energy and SustainabilityDr. Ali Zilouchian, Florida Atlantic University Dr. Ali Zilouchian is currently the Director of Applied Engineering Program and a Research Center Director at Keiser University. He is also the Emeritus Professor of Electrical and Computer Engineering at Florida Atlantic University (FAU) and Founding Project Director of a HSI Title III project funded by the U.S. Department of Education (DOE) at FAU. His distinguished career in academia and industry has many notable accomplishments focused on research and industry partnerships, and national models
(CSUB). He recei ©American Society for Engineering Education, 2023 CORE FEATURE EXTRACTION WITH COMPUTER VISIONI. Introduction This work details the senior project capstone experience of a group of undergraduatestudents at the California State University, Bakersfield (CSUB), a medium-size, comprehensive,Hispanic Serving Institution (HSI). The work is novel and potentially commercializable in thefield of energy conversion and petrochemical extraction. A thorough description of theirmethodology is provided, and their results show promise. In addition, we discuss the curriculumand project management structure that enabled an undergraduate senior project group to interfacewith oil and gas companies to
engineers from theindustry were invited to give a guest talk related to energy conversion applications incorporated intheir respective industries. This course covered topics related to the application of regeneration,reheating in boilers to solve a complex project related to setting up a steam power plant, analysisof jet engines and gas turbines, and application of sunlight for chemical energy conversion andstorage through Hydrogen production. This course also contained an ethics component to meetone of the ABET requirements. Through individual exams, group projects, presentations, groupdesign/analysis, and attending presentations from industry personnel, the student's performancewas evaluated. Additionally, an outgoing survey was taken from the
. Coupled with a boat, or other aquatic vehicles, that can travel faster than the flowprovided by the scooter, even more energy could be created by this turbine. For now, however, theturbine we created has successfully conveyed our idea and could be used and modified in the futureto fully realize our idea for this device.The SeaVolt turbine was created as a final project for a project-based learning first-yearengineering course that followed a model of experiential learning. Experiential learning stressesthe importance of student-led experience rather than textbook memorization. Throughout thecreation of the turbine, we conducted our own research and tests, seeking guidance from theProfessor or our peers as needed. While aiding in the enrichment of
Paper ID #376133D-Printed Piezoelectric Acoustic Energy HarvesterMichael A. PalmateerJacob PlesumsRyan SantiagoMr. Austin MillerDr. Reza Rashidi, SUNY University at Buffalo Dr. Reza Rashidi is an Associate Professor at SUNY University at Buffalo. He was an Associate Professor at SUNY Alfred State when he supervised the project presented in this paper. He received his Ph.D degree in Mechanical Engineering (MEMS development) from the University of British Columbia in 2010 and completed his Postdoctoral Fellowship in Development of Biomedical Sensing Devices in the Department of Electrical and Computer Engineering at the
) Public-and Private-Sector Partnerships; (iii) FinancialInvestments and Support for Institutional Research Capacity, and (iv) Performance Measures andAccountability.To address the development and implementation of the above goals, our HBCU team togetherwith some other Majority Institutions and private sector, proposed to the Department of Energy(DOE) a manpower development project proposal designed to increase the number ofunderserved minority students interested in STEM programs in nuclear science and technology.This is because there is a great need to identify existing and future gaps in the nuclear energyworkforce and to bring to the pool of trained workforce from the minority students graduatingfrom our HBCUs. In addition, the nuclear energy
erroneous results simply because the simulation produced them.In this paper, the authors propose a methodology for teaching power systems analysis that teachesstudents how to run power flow simulations using a commercial tool and gives them a deepintuition of what the simulator is doing. The authors propose that students learn how to truly learnto use a simulator by developing one from scratch. This simulator is developed over the course ofa semester by coupling the active learning techniques of the flipped classroom model and project-based learning. In the course, students watch videos prior to class to learn about modeling andimplementation techniques. In the class, students work with instructors and teaching assistants tobuild a simulator in a
UniversityAbstract Amidst concerns of climate change, pollution, and a rapid increase in oil prices, hybrid cars have become more favorable than traditional fuel cars. However, purchasing a new hybrid car is an expensive endeavor. The purpose of our project was to design a combination device that can be installed in an old gas car to give it the advantages of a hybrid. Companies such as Toyota and Tesla are using similar technical principles, but the essence of our approach is the development of a device compatible with older vehicles. This allows customers who previously owned the vehicle to enjoy the same performance improvements and fuel economy as an expensive hybrid at a lower price. The core idea of the design is regenerative braking, which
, compensator design for continuous-time and discrete-time systems, analog or digital filter design, and hybrid power system design. ©American Society for Engineering Education, 2023 Efficiency Analysis of a Hybrid Solar System DesignAbstractThere are multiple parameters to study when measuring the performance and efficiency ofPhotovoltaic solar cells. This paper is a part of one-year capstone project results forundergraduate students in Electrical Engineering major. This capstone project focuses onmaximizing the efficiency of a 100-Watt, 12V solar panel and studying its implementation in ahybrid power source system. Solar cell efficiency can be checked by measuring the poweroutput, voltage-current
focus on alternative energy and power generation. Thisprogram had its first graduates in 2014. Since then, we have undergone a continual growthprocess for Capstone Design, consisting of efforts to better integrate real-world projects that havea strong alternative energy focus and that can prepare graduates to work in the renewable energysector. In the 2022/2023 school year, capstone faculty became aware of the US Department ofEnergy Solar District Cup [7], [8] competition and went through a process to integrate thiscompetition into the program's Capstone Design. Several challenges were encountered during theprocess, leading to the goal of this paper: to share an overview of faculty experiences integratingthis competition into Capstone Design
background is in propulsion systems and combustion. Dr. Husanu has more than a decade of industrial experience in aerospace engineering that encompasses extensive experimental investigations related to energy projects such as development of a novel method of shale natural gas extraction using repurposed aircraft engines powered on natural gas. She also has extended experience in curriculum development in her area of expertise. As chair of the Engineering Technology Curriculum Committee, she is actively engaged in aligning the curricular changes and SLO to the industry driven student competencies. Her main current research interest is in engineering pedagogy, focusing on development of integrated mechanical engineering
with upgrades to theroom security and climate control. A glovebox using argon as the internal inert environmentalgas, with ppm O2 and H2O monitoring capabilities was installed. Coin-cell electrode punchingdies, a precision balance, cell assembly tools, micro-pipetting, and cell crimping capabilitieswere set up for use in the lab. A multi-channel cell cycling station was installed in the earlyspring of 2022 and full assembly and cycle-testing operations began in the late spring of 2022. Four LTU engineering students (two undergraduate students, and two graduate students)were employed as research technicians for this project. Two LTU faculty members alsosupported this work. Li-ion materials handling, cell assembly, lab techniques, and
Paper ID #39511Board 91: Work-in-Progress: A Systematic Gap Analysis of the AustralianPower Engineering CurriculumMiss Nisaka Munasinghe, University of New South Wales Nisaka Munasinghe is an enthusiastic undergraduate student at the University of New South Wales. She will be graduating with a Bachelor of Electrical Engineering (Hons), 2023, with her thesis project present- ing research for improvements to the Australian Power Engineering Curriculum. Since 2020, she has been working in construction as a cadet engineer with Sydney Trains, helping deliver and commission railway signalling projects for the NSW transport
Paper ID #36796Identifying the Needs of Electric Power Industry through Online Job Ads:A Mixed-methods ApproachHuiye Yu, UNSW Sydney Huiye Yu received her Bachelor of Electrical Engineering from North China Electric Power University, China, in 2021. She is studying a Master of Electrical Engineering at UNSW Sydney. She is currently working as a student Electrical Engineer at Aurecon.Mr. Hua Chai, University of New South Wales Hua Chai received his dual Bachelor’s Degrees in both Electrical Engineering and Project Management from North China Electric Power University, China, in 2014. He received his Master’s degree (Master
guidance as to what training is necessary for future engineers to meet thisdemand. This study gathers data from literature, industry perspectives and current educationalpractice to help establish suitable learning objectives for training undergraduate engineers to beprepared for solar project development. In general, results suggest that students be trained tounderstand the complete workflow of concepts related to design of photovoltaic systemsincluding solar positioning, the solar resource and irradiance data sources, design of aphotovoltaic system from both a solar resource and an electrical perspective and performingcalculations to model or support validation of photovoltaic systems. Professionals alsohighlighted the importance of discussing
Paper ID #36718Enhancing job-readiness through short courses: A case study in powerengineeringMr. Hua Chai, University of New South Wales Hua Chai received his dual Bachelor’s Degrees in both Electrical Engineering and Project Management from North China Electric Power University, China, in 2014. He received his Master’s degree (Master of Philosophy) in Electrical Engineering at the University of New South Wales, Australia, in 2019. He is cur- rently a Ph.D. student in the Energy Systems, School of Electrical Engineering and Telecommunications, UNSW. His research interests include power engineering education, curriculum
contentclarifications. Lab periods are used for online laboratory exercises and analysis, project check-ins, and periodic reflection. The labs contain pre-lab assignments and in-lab exercises. Pre-labshelp students prepare for in-the-lab brainstorming. The in-the-lab work includes watching avideo of the lab components, brainstorming the solutions, watching the lab video conducted bythe faculty, and doing a group analysis of the results. The learning outcomes intended for theonline labs are the same as in-person labs. Occasionally, a few minutes are allocated forreflection during lab periods aimed at increasing inclusion and a sense of belonging for allstudents.The one offering of the online labs is compared to two offerings of in-person labs, one precedingand
Paper ID #37977Design of a Massively Open Online Course on Electrical Microgrids withReal DatasetsDr. Roxana Maria Melendez-Norona, Florida Atlantic University Dr. Roxana M. Melendez-Norona is an electrical engineer and engineering project management special- ist with a Master’s and Doctoral degree in electrical engineering from Florida Atlantic University (Boca Raton, Florida, United States). As a professional Dr. Melendez-Norona continues being an engineering patroness and advocate since her energy and dedication towards engineering education are her best ref- erence. She has been working in the engineering industry since
. Even with optimumconditions the power produced was not enough to power a single household. That does not meanthis could not be used as an emergency power supply in the case that standard power productionfrom national grid fails that was seen the kind of damage that caused recently with the recentcold snap in 2021 that caused massive failures in the power grid. Although, the power producedby this method would not fully fulfill the need of people, however there is much that can beexpanded on this method. This work was performed in partial fulfillment of the requirements of the project in theModern Methods of Engineering Analysis course at the Engineering Technology (ET)department in the University of Houston – Downtown (UHD). The work was