theoretical valueand discuss the deviations. Both labs (Engr 302 and 430) comprise an open-ended projectwherein students use their findings to design and build experiments for a specific purpose.What is Currently Missing from the Civil Engineering Curriculum?In order to be prepared to enter the civil engineering profession upon graduation, undergraduatesmust acquire: (1) depth of knowledge; (2) proficiency at engaging in teamwork; (3) experience inworking with open-ended problems; and (4) a holistic approach to problems and to careerdevelopment (Sabatini 1997). It is imperative to incorporate hands-on research intoundergraduate teaching and curriculum development. Students learn best through hands-onexperimentation, which allows them experientially
. His research and teaching interests are in the areas of customized embedded DSP systems and digital signal processing as applied to radar signal processing, digital communications, image processing, adaptive filter design, and real-time systems. His applied signal processing contributions are many, and include the design an all-digital system-on-a-chip scheme for a Ka band radar and various target tracking algorithm developments for phased array systems.Tian Yu, University of Oklahoma Dr. Tian-You Yu is an Assistant Professor in the School of Electrical and Computer Engineering. His education at the University of Nebraska and post-doc experience at the National Center for Atmospheric
Raju, P.K., "Impact of Della Steam Plant CD-ROM in Integrating Research and Practice", 1998 North American Case Research Association, p. 118.9. Sankar, C.S., Raju, P.K., Kler, M. (1999), "Crist Power Plant: Planning for a Maintenance Outage", Business Case Journal, 5(1&2): 122-145.10. Raju, P.K., Sankar, C.S., Halpin, G., and Halpin, G., “Dissemination of Innovations from an EducationResearch Project through Focused Workshops,” Journal of SMET Education and Research, 3(3&4): 39-51,July-Dec. 2002.’11. Raju, P.K., Sankar, C.S., Halpin, G., Halpin, G., and Good, J. “Evaluation of an Engineering Education Courseware Across Different Campuses,” Frontiers in Education 2000 Conference, Kansas City, MO, 2000
immediately in competitiveenvironments with system engineering, information technology, and soft (communication,leadership and team) skills in addition to traditional engineering fundamentals 2,3. Such skills areparticularly relevant for Industrial Engineers who often serve as a facilitator of technical andbusiness interactions4,5.A number of efforts to increase these skills have been undertaken, the most common being thecapstone senior design projects. Curriculum designers are increasingly more aware ofdeveloping courses that combine skills from several prior courses to practice such skills.Especially innovative approaches introduce students to systems thinking early and continuouslythrough their program, stressing both engineering and business
with virtual experimentation10,11. Asmore of these programs are at the undergraduate level concerns of satisfying ABET accreditationhave been raised. Graduates of accredited programs are expected to have “an ability to designand conduct experiments, as well as analyze and interpret data” as well as be able to “use thetechniques, skills and modern engineering tools necessary for engineering practice”12. Foroutcome-based assessment (EC2000) the objectives must be known and understood before theycan be evaluated. Therefore, in 2002 a colloquy was organized by ABET and funded by theSloan Foundation to determine educational objectives for laboratories which could be used toevaluate distance programs2.The objectives span cognitive knowledge
2006-984: AN INTERDISCIPLINARY VIBRATIONS/STRUCTURAL DYNAMICSCOURSE FOR CIVIL AND MECHANICAL STUDENTS WITH INTEGRATEDHANDS-ON LABORATORY EXERCISESRichard Helgeson, University of Tennessee-Martin Richard Helgeson is an Associate Professor and Chair of the Engineering Department at the University of Tennessee at Martin. Dr. Helgeson received B.S. degrees in both electrical and civil engineering, an M.S. in electral engineering, and a Ph.D. in structural engineering from the University of Buffalo. He actively involves his undergraduate students in mutli-disciplinary earthquake structural control research projects. He is very interested in engineering educational pedagogy, and has taught a wide
newprocesses, using new materials and analyzing product/process reliability. They must performsophisticated life cycle testing and product reliability studies in a short amount of time in order tounderstand processes and the yield for new products. Page 11.1221.21 Corresponding Author – Phone:585-475-6081, Fax:585-475-7167, Email: smrmet@rit.edu2 Graduate Research AssistantTherefore, engineers must have multi-disciplinary skills that allow them to understand design forexcellence concepts. Industry needs new graduates who can contribute to design teams and allaspects of manufacturing, including assembly inspection, testing and reliability
to the use of advanced technology in solving interesting human-machine systems design problems. Page 11.166.1© American Society for Engineering Education, 2006 Aircraft Maintenance Technology Education: Integrating Asynchronous Technology and Virtual RealityAbstractThis paper describes a research program with an objective to develop and implement aninteractive virtual reality (VR) model of the aircraft inspection maintenance process forasynchronous delivery. Existing approaches have not been able to mimic accurately thecomplexity of the aircraft maintenance process, reporting limited transfer
engineering graduates.1.2. Impact of LITEE Case Studies on Engineering Education Realizing the importance of addressing these requirements, we formed the Laboratory forInnovative Technology and Engineering Education (LITEE) in 1997. A review of literaturerevealed that the teaching methodologies of lectures, experimental laboratories, design projects,case studies, games, and internships were all likely to achieve the requirements. An analysis ofthe application of these methodologies to meet the requirements, along with the results from pastevaluations of the use of case studies in engineering classrooms, indicated that the case studymethodology was the best candidate for bringing real-world issues into engineeringclassrooms11,3. We obtained
2006-177: ASSESSMENT RESULTS OF MULTI-INTELLIGENCE METHODSUSED IN DYNAMICSLouis Everett, University of Texas-El Paso Louis J. Everett is a Professor of Mechanical Engineering at the University of Texas El Paso. Dr. Everett is a licensed professional engineer in the state of Texas and has educational research interests in the use of technology in the classroom. His technical research interests include robotics, machine design, dynamics and control systems. leverett@utep.edu http://research.utep.edu/pacelabElsa Villa, University of Texas-El Paso Elsa Villa is a lecturer in the Department of Teacher Education, Division of Mathematics, Science and Technology, at the University of Texas