Col- leges; ”Building Learning Communities to Improve Student Achievement: Albany City School District” , and ”Educational Leadership Program Enhancement Project at Syracuse University” Teacher Leadership Quality Program. She is also the PI on both ”Syracuse City School District Title II B Mathematics and Science Partnership: Science Project and Mathematics MSP Grant initiatives.Dr. Ali Reza Osareh, North Carlina A&T State University Ali Osareh received his PhD from Virginia tech in 1994. He has worked in the industry including wireless design before joining the Department of Electrical and Computer Engineering at North Carolina Agricul- tural and Technical State University in 2000. He is specializing in Energy
thecourse is the primary evaluation mechanism to determine how well the course achieves this goal.However, several students have also mentioned that this course helped prepare them for designingtheir senior capstone project. Therefore, we are planning to implement an exit survey for thesenior design sections within our department to ask students if they took this course and if/how ithelped them with their senior project. We also plan to examine the senior project scores todetermine if there is any correlation between taking this course and improved senior projectperformance.We will also investigate methods to scale up the enrollment size of the course. This coursereached capacity each time it was offered with several students on the waiting list
serious goal of increasing interest in and awareness of informationtechnology among high school students. However, the end of the year competition which iscalled IT-Olympics downplays the competitiveness in an effort to make the whole experienceenjoyable. The target audience for this project is high school students, especially those studentswho previously have not exhibited an interest in studying IT. The authors have found thatcollaborative real-time challenges where teams from different schools are required to shareresources and join forces on design challenges are very successful. The students exhibit moresocial interaction after these collaborative real-time challenges and this adds to the "party"atmosphere of the entire competition
core.When designing such a course, the selection of a particular microcontroller is a very importantdecision. The selection should consider not only what microcontrollers are currently popular, butalso the ease of project development using the system, the availability of support to students, thecosts of starting up a lab, and the flexibility of the platform to fit into a course with multipleobjectives. This paper reports on using Cypress Semiconductor’s Programmable System on aChip (PSoC) as the basis for a microcontroller systems design course. The experience ofselecting the PSoC, designing a curriculum around it, designing laboratory exercises andmanaging the course are described. Furthermore, considerations such as the technical andfinancial
projects outside of laboratory class time. It also spreads the cost of the studentlearning kit over three courses. To support students who do not purchase a kit, our introductorycourse laboratory is equipped with HCS12 modules and project boards. In addition, theDepartment subsidizes the initial cost of the kits purchased by the students. The student learningkits are also used extensively in our senior capstone project course. Depending on the instructor,some of the introductory laboratory assignments have adopted the POGIL approach assignedabove.It is early days in our implementation of the POGIL methods in our laboratories. Although noformal assessment has been done at our institution, as it has at other universities17, we are findingthat after
FPGA.The greatest impact is on our senior capstone design sequences. The students are able to propose and startto work on the design project right away. Local high-tech companies and research faculties contribute tothese projects. This provides students with actual real-world problems instead of academic problems,which might not have real-world values! Page 11.832.5 5 Laboratory Setup & Management 4Our laboratory is set-up with sixteen stations and can hold at most thirty-two students. Each station has aPentium 4 2.8 GHz computer (with Windows XP) and
of EngineeringExamination or Major Field Test) or a faculty administeredcomprehensive examination. The indirect assessment tool we usein the assessment of Student Outcomes is a graduating senior exitsurvey. Below are brief descriptions of these assessment methods: • Course-Embedded (course-based) Assessments. These include projects, assignments, reflective essays, or exam questions that directly link to Student Outcomes and are scored using established criteria. • Exams. Locally developed comprehensive exams or nationally standardized exams (FE Exam or Major Field Test). • Capstone or senior-level projects provide evidence of how well students integrate and apply principles, concepts
Howard University in 1982. She is currently a Professor within the Department of Human Development and Psychoeducational Studies and Senior Research Associate with the Capstone Institute, both at Howard University. Dr. Thomas’ research interests include culturally responsive evaluations and the educational and socio-emotional outcomes of students of color. Dr. Thomas has collaborated with the Department of Electrical Engineering in planning and implementing evaluation studies. Page 13.59.1© American Society for Engineering Education, 2008 Mobile Studio Experience of Experiential
variety of settings in spacecraft design and survivability and reliability. He has led programs in experi- mentation, modeling, and simulation of radiation effects in electronic systems. He has been involved with six separate space-based radiation effects experiments over the last 20 years: 1) RadFx-1,-2,-3: A series of CubeSat Based Radiation Effects Testbeds (PI), 2) Microelectronic and Photonics Test Bed (Instrument Card PI), and 3) Combined Release and Radiation Effects Satellite (Investigator), 4) Living With a Star – Space Environment Testbed (mission definition and requirements). As a NASA civil servant, Robert was the lead radiation effects systems engineer for several NASA spaceflight projects, including the
. Carnegie Melon University – Embedded Systems Design - http://www.ece.cmu.edu/~ece549/index.html4. Wayne State University – Capstone Design – http://ece.eng.wayne.edu/~smahmud/ECECourses/ECE4600/ECE4600.htm Page 13.106.125. Vector Group Worldwide – http://www.vector-worldwide.com/6. Dearborn Group - http://www.dgtech.com/7. International Standards Organization, “Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical signaling,” ISO 11898-1, 1993.8. International Standards Organization, “Road vehicles – Controller area network (CAN) – Part 2: High- speed medium
Chemical Engineering. He is a registered Professional Engineer in Tennessee. He has nineteen years of industrial experience in industrial process and product development in the detergent, paper, and packaging industries. He teaches capstone design, value engineering and engineering economy at the undergraduate level, and technical innovation and advanced engineering economy in the graduate Engineering Management program. His research interests include product development, technical innovation, entrepreneurship, and design. c American Society for Engineering Education, 2016 A Comprehensive Approach to Power Sector Workforce DevelopmentAbstractThe University
development of "Introduction to Embedded Computing," which provided avaluable model for both pedagogical approaches as well as laboratory and instructor resourcesthat would be required.7 All of these courses are taught in a studio style in which the laboratoryand lecture material are combined into a single cohesive period and in the same physical space,as shown in Figure 1. Each class meeting typically consists of a short lecture in which conceptsthat are relevant to the experiment are introduced followed by the experimental section of themeeting; all classes have both experimental, and lecture components and each course in thesequence is taught each semester. Educational research has demonstrated the effectiveness of hands-on project-based learning
, students enjoyed the exposure, and they believe that this curricular enhancement was abeneficial learning experience. Future work includes integration of the Analog Discovery in higher level ElectricalEngineering courses, Capstone projects, and undergraduate research projects. The impact of this Page 26.430.11effort on the transition of students between consecutive courses will also be studied.Acknowledgements:This work was supported by the National Science Foundation under NSF Award Number1255441 for Experimental Centric based engineering curriculum for HBCUs. The authors wouldlike to acknowledge the
-week production practice course in the summer before senior year. Students work in local power plants as interns and are directly involved in the production process. This course gives students an excellent opportunity to apply knowledge learn to the real working environment in Chinese power industry while learning new things in the areas of actual production process and project management. 5. A 16 credits 16-week senior capstone practice course. Students spend 16 weeks working as interns in engineering firms and solve well-defined engineering problems. In general, students also spend the last semester of their senior year working on their diploma thesis at the same firms. This practice course
addition to engineering education, his research interests include simulation and software engineering.Christa Chewar, United States Military Academy Dr. Christa Chewar is an Army Major and an Assistant Professor in the computer science program of the Department of Electrical Engineering and Computer Science at the United States Military Academy, currently serving as an engineer on a major software project in Virginia. Her research interests include human-computer interfaces in addition to engineering and computer science education.Jean Blair, United States Military Academy Dr. Jean Blair is a Professor of Computer Science and director of the computer science program of the Department
engineering curriculum has long been recognized.However, students often do not complete a hands-on, comprehensive design project until theirsenior year capstone design course. While this is obviously a very valuable and appropriatelearning experience, students benefit from and desire earlier and more frequent real-world designexperiences12. One reason design experiences are often delayed is that students do not have thetechnical breadth early in their academic careers necessary to complete a comprehensive designproject. While students in the first-year course, Fundamentals of ECE, do not have the breadthand depth to successfully carry out a completely open-ended design project with a level ofsophistication expected from senior students, they do have
additional mathematics courses (e.g., Community College Transfer Plans 2016-2017).Once a student is accepted to the engineering major, their access to advanced content courseswithin the major is determined by their GPA (Electrical Engineering Self-Study Report). It isimportant to note that students need only be admitted to the university in order to start anelectrical, computer, or software engineering major; in other words, students do not have toapply and be admitted to both the university and the college of engineering. Throughout the electrical engineering major, the focus on specific professionalcompetencies are at the heart of the seminar and capstone courses. These competencies include:“communication, teamwork, project management
; Program Manager for Electrical Transmission and Distribution Contracts, Iraq Project and Contracting Office (PCO), Bagh- dad, Iraq; Assistant Public Works Officer, Program Management Officer, Operations Officer, AROICC, ROICC, and Facilities, Engineering and Acquisition Division Director, Public Works Department, NAS Sigonella, Sicily; Seabee Enlisted Community Manager (BUPERS-325D), NSA Millington, Millington, TN; and Assistant Current Operations Officer (N3C1) and Current Operations Officer (N3C), Navy Expe- ditionary Combat Command (NECC), JEB Little Creek-Fort Story, VA. He obtained his Ph.D. in Electri- cal Engineering from the Naval Postgraduate School. He is a Registered Professional Engineer in the state of
Engineering, both from University of Maine.Dr. Taufik Taufik, California Polytechnic State University, San Luis Obispo Dr. Taufik received his B.S. in Electrical Engineering with minor in Computer Science from Northern Ari- zona University in 1993, M.S. in Electrical Engineering from University of Illinois, Chicago in 1995, and Doctor of Engineering in Electrical Engineering from Cleveland State University in 1999. He joined the Electrical Engineering department at Cal Poly State University in 1999 where he is currently a Full Pro- fessor. He is a Senior Member of IEEE and he has done work for several companies including Capstone Microturbine, Rockwell Automation, Picker International, San Diego Gas and Electric, Sempra
capstone design project reports. However,the difference here is to have a structure to provide multiple formative feedbacks from theinstructor, the peers, and the student writing fellow (trained by the writing center) to helpstudents reflect on their weaknesses in writing through multiple interactions and assessment overa period of a semester. Furthermore, this vigorous writing-to-learn process is repeated in twosubsequent courses to ensure students proficiency in the process. In this format, the benefits ofusing writing-to-learn methodology have been expressed in many ways in the literature, such asimproved student writing, increased student learning and engagement, student-facultyinteraction, collaborative learning, and critical thinking to name
AC 2007-245: SIX YEARS AND THOUSANDS OF ASSIGNMENTS LATER: WHATHAVE THEY LEARNED, AND WHAT HAVE WE LEARNED?J. Shawn Addington, Virginia Military Institute J. Shawn Addington is the Jamison-Payne Institute Professor and Head of the Electrical and Computer Engineering Department at the Virginia Military Institute. He received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Virginia Polytechnic Institute and State University. He teaches courses, laboratories, and undergraduate research projects in the microelectronics and semiconductor fabrication areas; and, he remains active in curriculum development and engineering assessment. He is a registered professional engineer in the
benefits accrue equally to students who have followed a full-time academic Page 23.576.11 program and those whose educational progress has been interrupted by jobs, family or transfers. The efficiency with which experimental competency can be applied later in unscripted applications such as capstone projects. The extent to which faculty and student-generated experiments can be openly distributed to act as a platform on which to build a customized practical learning experience. Can the appeal of Mobile Studio and Lab-in-a-box to students underrepresented in STEM education be scaled up? Does
is the course director in circuits and electronics area. She taught variety of underrated and graduate courses including capstone design in Electrical and Computer Engineering area. c American Society for Engineering Education, 2017 Embedding YouTube Videos and Interactions in PowerPoint Using Office Mix for Adaptive Learning in Support of a Flipped Classroom Instruction John M. Santiago, Jr., Ph.D. and Jing Guo, D.Eng. Colorado Technical University (CTU), College of Engineering, Colorado Springs, COBackground on Using Camtasia and YouTubeShortly after retiring from the United States Air Force in 2003, the Professor Santiagoinvestigated the viability of teaching engineering
attributes to be another aspect of the content that provedproblematic. 6Lack of real life-application of contentInstruction focused on AC circuits and other complex circuit concepts should make use oftangible and real life application where possible. Providing students with the ability to engagewith the concept in a concrete manner is reported to have lasting impact on their ability to recalland transfer their knowledge from one domain to another [1-2]. The findings from this study haveindicated the need for the inclusion of real life application in introductory engineeringclassrooms. While the argument can be made that students get exposed to design problems whenthey are assigned their capstone
-based solution to a problem (question 5, av. =3.93/5.00) and many felt (question 4, av. = 3.93/5.00) that there was a high likelihood theywould directly apply what they learned in a future project (e.g. senior capstone project,employment, etc.). Finally, the survey shows that students left the course with an increasedenthusiasm for the Internet-of-Things as well as the desire to continue study of this topics afterthe conclusion of the course (question 8, av. = 4.28/5.00).Figure 5. Student Opinion Survey of Course Content and Attainment of Learning Objectives5. Discussion and Future WorkThe assessment results of section 4 show that the course was successful in providing studentswith a solid technical foundation for the Internet-of-Things. By way
Theory, Signals and Systems, Electromagnetic Theory, Digital Signal Processing, Dynamic Modeling and Control, and Power Systems. His research interests include Engineering Education, Control Systems, Robotics, and Signal Processing.Dr. Charles R. Thomas, Roger Williams UniversityDr. William J. Palm, Roger Williams University William Palm is Associate Professor of Engineering at Roger Williams University, where he teaches En- gineering Graphics and Design, Computer Applications for Engineering, Machine Design, Manufacturing and Assembly, Materials Science, Biomechanics, and Capstone Design. He previously worked as a prod- uct design engineer and consultant and taught at the U.S. Coast Guard Academy and Boston University
communications,and senior capstone design project courses, teaching laboratories and projects helpedimprove student participation, got the students actively involved and excited about theprojects and the material being taught, motivated the students to better master coursecontent and taught the students to learn to think and reason more clearly, accurately,relevantly, logically, rationally, ethically and responsibly.This paper discusses how the judicious, sensible and affable use of the Socratic Methodin the aforementioned educational settings facilitated the development of students whoare learning to possess the basic skills of thought and reasoning such as the ability to:identify, formulate and clarify questions; gather relevant data; identify key
technology in education; more recent research contributions include papers on learning outcome assessment in both lower-division core courses and in senior-level capstone design courses.Mark C Johnson, Purdue University Mark C. Johnson is the Lab Manager for Digital and Systems Laboratories at Purdue University. He is a Ph.D. graduate of Purdue University in the School of Electrical and Computer Engineering (ECE). He supervises the ASIC Design Lab, Computer Architecture Prototyping Lab, and Software Engineering Tools Lab. He also co-advises project teams in Digital Systems Senior Design. He supports and maintains many of the electronic design automation tools used in ECE, and is involved in the
. Currently, he is an Associate Professor of Electrical and Computer Engineering Department. During the last 20 years, he has been working in the areas of hierarchical multiprocessors, hierarchical networks, performance analysis of computer systems, digital signal processing, embedded systems, in-vehicle networking, performance analysis of networking protocols, secure wireless communications, and privacy protected vehicle-to-vehicle communications and simulation techniques. He has supervised a number of projects from Ford Motor Company and other local industries. He also served as a Co-PI on two NSF funded projects. He has published over 100 peer-reviewed journal and conference proceeding papers. He
decisions and critique the accuracy of the information. Students who evaluate well can provide reflections on approaches taken to solve a problem and demonstrate their ability to assess underlying concepts in the process of choosing the best among multiple alternative solutions. ● Create: putting elements together to produce a new pattern or original work. In engineering, the previous levels of the taxonomy culminate to the design of a component or system that invokes all previous levels of the taxonomy. Such efforts to create are often stimulated in capstone design classes but can also be invoked in smaller projects in lower- level courses.Promoting the integration, design, and evaluation capabilities of students is