various courses with nospecific framework likely had limited effect. Studies have shown that going about teachingethics in this manner likely results in teaching “microethics”8 which lacks the broader context ofhow ethics impacts society as a whole.It is also noted that senior engineering students that are taking their capstone course are verybusy. The engineering capstone in our program is typical of other institutions in that it requires alarge time commitment from the students. They have projects to complete, numerous reports towrite, and presentations to prepare. It is likely that taking this ethics examination is not a highpriority in their list of things to complete so it may not be given the serious attempt that wewould hope from these
engineering professor at the University ofColorado Boulder and has interests in sustainability, Learning Through Service (course-basedservice-learning and extracurricular service programs), social responsibility development instudents, ethics, and global issues. Her teaching for undergraduate students has focusedprimarily in the first year and capstone design, with learning outcomes targeting sustainability inall of her courses. She has found that project-based learning is an effective method to achieve adiversity of inter-related, complex learning outcomes. She has also found that case studies canserve as the basis for stimulating students’ considerations of complex issues such as ethics andsustainability. A case study that she has used for many
, in other cases clear differences were evident. For example, somebelieve that ethics education must be grounded in ethical theory, while others believe this to beunnecessary. In addition, ESI issues that arise “naturally” in the context of engineering projects(either in community service programs, projects for clients, or capstone design) were perceivedas being particularly impactful by some, but perhaps falling short by others.What was missing from all of the two-page summaries of the ESI teaching settings was evidenceof student learning. This is a key element in the next phase of the research. A sub-set of courseshave been selected for further study based on the exemplary rating process. For this sub-set oflearning environments, the
to social responsibility, but theydon’t examine how faculty or departments believe that they are influencing such views. At the17 institutions surveyed, it would be beneficial for departments to see where their students saidthey were influenced and compare that to where they thought they were affecting student views.Departments could assess if the first-year or capstone projects were influencing the ethicaldevelopment that they expect. Possible single time interventions on ethical or professionalresponsibility are not enough to provide lasting impressions on students such that they wouldhighlight that course years later. This could be an impetus to change such approaches to ethicseducation. More broadly, this work provides a useful approach
because of the open-ended nature of the activity [30]. Sinceproject-based learning is often done in teams, students engage in reflective dialogue and weighvarious perspectives that further promote critical thinking. Students are also given moreownership over their learning process than they would with traditional course pedagogy, whichfacilitates positive motivations [29], [42]. Capstone design projects, required of all ABET-accredited programs, is just one example of such open-ended, team-based projects. 6Providing real-world scenarios with no right or wrong answers provides an ideal context forstudents to learn how to apply critical thinking to
lecture based approach. Hence, in 2016, as the newcomponents, reviews on ethical case studies and exams were added to the course. Also, thegraduates from the same ENE program, who currently work in the industry and the governmentwere invited as the guest speakers to provide the students their insights and the experiences. Withthe Fall 2016 assessment (Appendix-C), in the capacity of the instructor, the first authorrecommended to incorporate two more components, project management and research conductinto EPS course with the experiences gained from other courses. Project management was foundas a required topic from the course, Senior Capstone Project. Engineering students doingundergraduate research at the authors’ institution have to pass an
. Mike’s research concerns how people think and learning, and specifically how technology can enhance the way people think and learn. His NSF-funded project, GEEWIS (http://www.geewis.uconn.edu/), focused on streaming real-time water quality pond data via the Internet and providing support for the integration of this authentic data into secondary and higher education science classrooms. His approach features the analysis of log files, ”dribble files,” that maintain time-stamped listing of navigation choices and lag time. This approach has been applied to hypertext reading (Spencer Foundation grant), videodisc-based prob- lem solving (Jasper project), and online navigation (Jason project). Recent work concerns playful
, successfully accomplish and reflect upon an activityreferred to as a compassion practicum. The compassion practicum sought to begin thedevelopment of a critical consciousness in students. Students’ projects fall into two categories:(1) a service learning type project which must in some way improve the quality of life of othersand involves a minimum of 15 hours of actual service; and (2) a guided, extensive visit of ananimal rescue society farm in which students confront animals typically used in biomedicalresearch projects and reflect on the entire experience.IntroductionBiomedical engineering is the application of engineering principles and techniques to medicine.It combines expertise in engineering with expertise in medicine and human biology to
teaching and learning strategy thatintegrates meaningful community service with instruction and reflection to enrich thelearning experience, teach civic responsibility, and strengthen communities” [5]. Weare interested in SL for two main reasons. The first being that there are efforts toinvestigate whether SL and volunteering has a positive impact on students inmeasures of social responsibility [2],[6]. Yet a caveat is that understanding whichspecific factors contribute to changes in social responsibility attitudes is lacking.Second, engineering and computing programs typically include a capstone project ordesign-based course as a degree requirement. Our project may shed light on SLcomponents that could be integrated into the design of such
and Environmental Engineering at Rowan University. Dr. Bauer holds a doctoral degree in Civil and Environmental Engineering from the University of Virginia, Charlottesville. Dr. Bauer is the recipient of numerous awards and scholarships as a young professional. Her primary research interests are: water and wastewater treatment, renewable energy technologies, and pollution prevention. She has worked on a variety of educational projects to enhance environmental engineering education while at Rowan University. Dr. Bauer is an active member of ASEE and the Society of Women Engineers (SWE) and currently serves as the Faculty Advisor for Rowan’s Student Chapter of SWE.Prof. Cheng Zhu, Rowan University Dr. Cheng Zhu
interest in socio-scientific issues, and how they saw the role ofethical reasoning in their future profession as an engineer.Brief field notes taken after each interview helped in the preliminary data selection. Two of theinterviewed students, Tom (a junior-year engineering major) and Matt (a junior-year computerscience major), talked about weaponized drones as part of their interview. They had writtenabout this topic in their sophomore year as part of a capstone research project in the STSprogram. Besides the thematic congruence, another thing that caught our attention was that bothstudents regarded drone warfare to have negative consequences but, to different degrees, wantedto absolve the designing engineers of bearing responsibility.One of us
senior-level Professional Issues in Civil Engineering course was taught for the firsttime in fall 2015. The course is intended to address the new ABET program specific criteria forcivil engineering to “raise the bar” on ethics instruction. The course is also intended to helpstudents understand the importance of sustainable design and the impacts of engineering onsociety. One of the methods used to teach students about these issues included a structuredcontroversy on a proposed new water resources project in Colorado. There was also an extensivecase study analysis of Hurricane Katrina and New Orleans that spanned four weeks of the course,two lengthy written assignments, and in-class discussions. This included a discussion of thesocial justice
peacetime and combat experi- ence. Upon completion of active military service, Dr. Greenburg served in program leadership positions at Eagan McAllister Associates, and Science Applications International Corporation until he joined the faculty at the Citadel. Dr. Greenburg’s research interests include modeling project networks, technical decision making and leadership. Dr. Greenburg earned is BA in History at The Citadel (1981), Masters in Management from the Naval Postgraduate School (1994), and his PhD in Business Administration (Man- agement of Engineering and Technology) from Northcentral University (2010). He is a certified Project Management Professional (PMP) by The Project Management Institute (PMI).Dr. Robert J
, Cost/Risk tech risk, safety, uncertainty, whistleblowing, NA 8 NA / 89 Lg, R1 elective, So- environmental protection, organizational Grad, Ind3 Cv25 ethics, IP / discussion, videos, current CS25 events, case studies, reflection Sci-Elect Public, Elective, FY to energy, climate change, NA 35e NA / 40 Lg, R1 Grad, mainly sustainability/lecture, discussion, group non-STEM projects, discussion of contemporary controversy from multiple perspectives SrDsn-Env Public, Capstone Dsn
, dispositions, and worldviews. His dissertation focuses on conceptualizations, the importance of, and methods to teach empathy to engineering students. He is currently the Education Di- rector for Engineers for a Sustainable World, an assistant editor for Engineering Studies, and a member of the ASEE Committee on Sustainability, Subcommittee on Formal Education.Ms. Sarah Aileen Brownell, Rochester Institute of Technology Sarah Brownell is a Lecturer in Design Development and Manufacturing for the Kate Gleason College of Engineering at the Rochester Institute of Technology. She works extensively with students in the mul- tidisciplinary engineering capstone design course and other project based elective courses, incorporating
that enables and enhances personalintrospection and contemplation leads to the realization of our inextricable connection to eachother, opening the heart and mind to true community, deeper insight, sustainable living, and amore just society.”The approach is implemented in a senior level capstone design two course sequence which isheld concurrently with a course in engineering ethics. Projects undertaken by student designteams are primarily suggested by members of local and regional non-profit and not for profitagencies that focus on meeting the needs of residents with various physical, mental andemotional challenges. The engineering ethics is course is held during the fall semester while thecapstone design course sequence begins in the fall
the issue whilemeeting the original design specifications.Beatrice additionally observed variations in professional judgment among the engineers she hadworked with on various projects. As she explained in considerable detail: So each one [professional engineer] is a different person, and they have their own personal preferences of, “This should be engineered this way, I would like you to do it this way.” It’s their license, so we do it their way. But if you were to talk to the other professional engineer, just in the other office, they might have a different opinion on it. So, it’s like, “Which one’s the right one?” Knowing what’s best is hard, especially in an area that can have so many variables. Because
initiatives at an interdisciplinary research institute called the Institute for Critical Technology and Applied Science (ICTAS) at Virginia Tech. He is the founding director of an interdisciplinary lab called Learning Enhanced Watershed Assessment System (LEWAS) at VT. He received a Ph.D. in civil engineering from VT. His research interests are in the areas of computer-supported research and learning systems, hydrology, engineering education, and international collaboration. He has served as a PI or co-PI on 16 projects, funded by the National Science Foundation, with a $6.4 million research funding participation from external sources. He has been directing/co-directing an NSF/Research Experiences for Undergraduates (REU
be.” As a result, the department for which he is the chair changedtheir approach to ethics education by integrating it into capstone design in the context of thestudent projects instead of teaching it through isolated modules. Another educatorexperienced similar pushback and stated, “once in a while, a student will raise kind of anobjection on principle that this is not engineering, ‘I’m in engineering, this is notengineering stuff that we’re doing’”. This perception is not unique to students, anotherinterviewee explained as the only educator in the department integrating ESI intoengineering classes, “it ends up being stigmatized… the person that ends up doing it, at leastin my case, ends up getting labeled not a real engineer.” To shift the
academics first and everything else last”), in addition to their courses having very little socialcontext. This may be indicative of a typical problem in engineering education – first-yearcourses are interesting and project-based, but then in the second year, all the intense prerequisitesmust be taken, which limits students’ abilities to engage with social issues within or outside theircourses. Additionally, some students chose to be more involved with sororities or sports teams Page 26.643.6rather than volunteer groups, and their schedules did not allow for both activities.Table 2: Demographics of Students Interviewed and EPRA Survey Results
of K-12, program evaluation and teamwork practices in engineering education. His current duties include assessment, team development, outreach and education research for DC Col- orado’s hands-on initiatives.Dr. Chris Swan, Tufts University Chris Swan is Dean of Undergraduate Education for the School of Engineering and an associate pro- fessor in the Civil and Environmental Engineering department at Tufts University. He has additional appointments in the Jonathan M. Tisch College of Civic Life and the Center for Engineering Education and Outreach at Tufts. His current engineering education research interests focus on community engage- ment, service-based projects and examining whether an entrepreneurial mindset can
multidisciplinary research? What are they? How can a mentor’s reaction to the unexpected motivate or influence a mentee to make good or bad ethical choices? What is the issue or point of conflict?In the case study titled “Plagarism,” participants are asked to imagine what they would do as onemember of a team of students working on a capstone project that has been assigned to develop abackground report about the current state-of-the-art. The day of the deadline, another membersends their background section with what appears to be a large, plagiarized section of text (basedon a quick internet search); the assignment is due today and the author can’t be reached. Thiscase study asks participants to consider what they would do, how they
between delivery methods, defined as the waythe training is incorporated into the curriculum, and instructional strategy, defined as the waythat instruction is delivered in a specific course. They found three primary delivery methods:embedded approach (also known as across the curriculum), joint model or team teachingapproach, and a standalone course.13 Colby and Sullivan found similar delivery methodsdescribed as standalone ethics classes, brief discussions in multiple classes, and modules inintroductory and/or capstone courses. Colby and Sullivan reviewed 100 ABET self-studies andvisited 7 programs. They found that a carefully thought-out strategy for ethical instruction forengineering students was rare. Rather, “overall, a picture emerged of
schools, are responding to theseserious issues with training, task forces, student groups, counseling services, and concertedattempts to shift the culture towards openness and accountability [30]. Further, there areprograms that actually center social justice, community engagement, and humility regardingprivilege and power are growing. Some examples include the Colorado School of Mines, MercerUniversity, Oregon State University, and Villanova University [31]–[34]. These not onlydemonstrate care for people and the environment impacted by engineering projects, but alsoencourages students to care for each other.An Ethic of Care may provide a framework through which engineering faculty and staff atuniversities can improve their cultures to be more
Engineering and Technology (ABET) has made anexplicit statement in its criteria that engineering programs must demonstrate that their students arehave “an understanding of professional and ethical responsibility”. Many engineering schoolshave developed various trails to deliver ethical contents, either through creating standing aloneethical courses, or through embedding the ethical topics in traditional engineering courses,typically capstone design. This pragmatic approach has been supported by engineeringprofessional societies such as NSPE, ASME, IEEE, etc. which historically have played a crucialrole in shaping the content of US engineering ethics education (Downey & Lucena 2004). Underthe general principle of “doing no harm”, each association