others,” and finally “enlisting,engaging and empowering followers.” This is considered the first step in team building (wherethe team is the class), because it gives them common terminology and information to share.Building to the Capstone Experiential Leadership ExerciseThe Capstone Experiential Leadership Exercise is the culmination of several activities andlearning experiences. Unlike the models presented in Pitts et al. [1] and Warnick et al. [2], thismodel relies almost exclusively on external (to the class) opportunities for leadership either oncampus or in local organizations. This is facilitated greatly because most of the students selectedfor the program already hold a leadership position in at least one organization. The Fall seminaris
American Society for Engineering Education, 2015 Engineering Leadership as Principled NonconformityFour years at MIT permanently solders some primary circuits of the mind, and perhaps for that reason some modes of thinking seem permanently closed to me. --Richard Meehan, Getting Sued and Other Tales of the Engineering Life, p. 18As a recent review article in the Leadership Quarterly (2014)1 reported, “Leadershipdevelopment has emerged as an active field of theory building and research, providing a morescientific and evidence-based foundation to augment the long-standing practitioner interested inthe topic” (p. 63). Like many of the papers submitted to the Engineering
seat, also served to help theMavericks redefine leadership, gain a better understanding of leadership, and increase theirleadership skills (4.5, STDV 0.55; 4.67, STDV 0.52; 4.67, STDV 0.52; based on an ordinal scalewith 1 being strongly disagree and 5 being strongly agree). The experience also helped themincrease their Character, Competence, and Capacity (4.67, STDV 0.52; 4.33, STDV 0.82; 4.92,STDV 0.20). The Mavericks also agreed that the experience helped them increase theirinnovative problem solving and thinking skills (4.17, STD 0.41) and develop their identity (4.25,STDV 0.76). Overall, this research demonstrated the feasibility and effectiveness of allowing
face of constraints or obstacles, resourcefulness and flexibility, trustand loyalty in a team setting, and the ability to relate to others”8 (p.1). The CDIO Syllabusdefined engineering leadership as “the role of helping to organize effort, create vision, andfacilitate the work of others” (p.68)9. It is clearly stated that leadership is not orthogonal tothe remainder of the engineering curriculum, but rather there is an extensive amount ofoverlap between leadership skills and the other engineering skills9. More studyoperationalized leadership, change, and synthesis within the context of engineering education,it may help to define learning outcomes and competencies for engineering leadershipprograms3,10.Some research grouped three main themes
leadership and teamwork11.Developmental bibliotherapy (guided reading) is a tool that uses fictional written stories to helpdevelop social, emotional, or psychological growth at all levels of development12-13. In 1949,Shrodes identified four stages of developmental bibliotherapy: 1) identification - where thereader identifies with a character in a story; 2) catharsis - when a reader is able to experience theemotions of the character of the story; 3) insight – a deeper understanding which is achievedthrough reflection on the identification that the reader makes with the characters and situations ofthe story; and 4) universalization - when a reader is able to apply the insights the reader hasgained through reflection to situations they encounter in
their careers, many, if not most mayreasonably expect to play a leading role in an engineering or product development effort at somepoint. Will they have the necessary preparation and skillset? And where should this preparationtake place? These issues are the focus of this paper, which is based on a study of engineeringleaders and the skills and roles that are essential to the work they do. What skills will be required of an engineering leader? In a typical matrix organizationleadership roles might involve permutations around project or functional, or technical ormanagerial (1). In a program, a program manager would fill the managerial role while a chiefsystems engineer might fill a technical role (although in some cases both roles might
over time.IntroductionThe Engineering Leadership Development Program at The Pennsylvania State University wasone of the pioneering university-level leadership development programs in the world. Foundedin 1995 as an initiative of the Leonard Center for the Enhancement of Engineering Education, theProgram has graduated over 600 students with an 18 credit-hour minor in EngineeringLeadership Development.A study conducted by Purdue University suggested that today’s engineering leader must be well-versed in three dimensions, namely technical, professional, and global skills.1 While the initialfocus of the Penn State Program was to address professional skill development, over the past 10years, global competency skill development has been robustly
(NAE) and its 2007 publicationRising Above the Gathering Storm: Energizing and Employing America for a Brighter EconomicFuture [1] in which they urged a focus on developing, recruiting, and retaining engineers. Datasupporting this demand is documented in the National Science Foundation’s publication, Scienceand Engineering Indicators 2012 [2], using Bureau of Labor Statistics from 2002 to 2018 thatproject job openings from growth and needs replacement, which will top 160,000.There is an evermore urgent need for our higher education sector to graduate engineers whopossess the knowledge, skills, and abilities to respond to a 21st-century world with its technical,social, and ethical complexities. Indeed, engineers’ abilities to meet these needs
Education. Vol. 103, no. 4, pp. 625 – 651.2. Amirianzadeh, M. et al. (2011). Role of student associations in leadership development of engineering students. 2nd World Conference on Psychology, Counselling and Guidance.3. Shelby, R. et. al. (2013). Implementation of leadership and service learning in a first-year engineering course enhances professional skills. International Journal of Engineering Education. Vol. 29, no. 1, pp. 1 – 4.4. Schulich Student Activities Fund Policy Revised 2013. University of Calgary.
. Page 26.1718.1 c American Society for Engineering Education, 2015 What Behaviors and Characteristics Do Engineering Competition Team Members Associate with Leadership?Engineering student competition teams (ECT) are promoted as incubators for the development ofleadership, 1, 2 yet we know little about how leadership actually develops within these teams. Acase study of two teams at a public university in the central U. S. was performed, with theobjective of exploring leadership development at the individual and team levels. Implicit in theconcept of team leadership development is the development of individuals as leaders. This paperdiscusses the behaviors and characteristics that students
engineering leadershipdevelopment opportunities. Page 26.486.2INTRODUCTIONThe University of Calgary is located in Canada’s ‘engineering capital’ and has over 4,500 undergraduateand graduate students. Within the school there are approximately thirty clubs, teams, and associations(CTAs) active at any time and the groups are loosely organized into four categories: governance groups(Engineering Students’ Society, department students’ societies, etc.), competitive teams (Solar Car, FSAEFormula 1 racing, etc.), industry affiliated student chapters (IEEE, ASME, etc.), and cultural-socialgroups (Engineers Without Borders, Schulich Soundstage musicians, etc
conclusions. Finally, we introduce the OrganizedInnovation Model for Education, which is based on features of the ERC Program and other 2similar multi-disciplinary, multi-institutional university research centers (MMURCs). In thisfinal section, we provide specific recommendations for educators, university leaders, and policymakers on how educational systems might be enhanced to produce a better prepared, leadership-ready engineering workforce.Section 1: The Problem A common lament is that when an organization’s best engineer is promoted to aleadership role, that organization loses the best engineer and gains the worst leader. The skill setsrequired for engineering jobs and leadership roles are
aspirations. Originally based on thetheoretical work associated with the Reflected Best-Self 1 (RBS) and life narratives 2, thissemester-long assignment enables students to use qualitative and quantitative methods todiscover and articulate their unique capabilities, values, defining life experiences, and other coreelements of their identity. We often think of college as being one of the most formative periodsof someone’s life and evidence from research supports this important observation 3. Yet manystudents may graduate from college without ever spending time addressing questions that arecentral to forming a confident sense of self - “Who am I”, “What do I stand for, “Who do I wantto become”, and why? These kinds of questions are rarely addressed in
the participation of minority group members in an organization.1 Particularlywhen a majority group is highly dominant, these barriers pervade recruitment, retention,advancement, and overall climate; diversity suffers, and the overall effectiveness and health ofthe organization is diminished. Academia has a long history of dominance by men. This hasbeen and remains particularly true in engineering, an example where “inequality regimescontinue to be relatively resistant” to change.2There is a growing body of evidence that men and majority individuals can serve crucial roles tosupport the advancement of women within organizations.3-6 Online gender equity advocacyorganizations, such as Men Advocating Real Change (http://onthemarc.org/home) also
descriptor (ESTP, ENFJ...) do you feel best describes the leader, and why? • What types of conflicts did they experience and how did they cope with them? • Based upon the leadership capabilities taught in the program how do they rank? • What sources of power appear to be the leader's default preferences? • What surprised you?2.2 Engineering Leadership PosterNext the students prepare hand-annotated posters (Figure 1 Engineering Leadership Poster) thatare displayed in the corridor and public spaces of the department for a week for view andcommentary by faculty, other students and the public. Page 26.503.3