©American Society for Engineering Education, 2023 Implementing Integrated Project-Based Learning Outcomes in a 21st Century Environmental Engineering CurriculumAbstractEngineering education research and accreditation criteria have for some time emphasized that toadequately prepare engineers to meet 21st century challenges, programs need to move toward anapproach that integrates professional knowledge, skills, and real-world experiences throughoutthe curriculum [1], [2], [3]. An integrated approach allows students to draw connections betweendifferent disciplinary content, develop professional skills through practice, and relate theiremerging engineering competencies to the problems and communities they care about [4], [5
Paper ID #37595Sustainability designation, introductory course, and a new textbook inan engineering curriculumJeremy Vanantwerp, Calvin University Professor of Engineering at Calvin College.Ms. Julie Anne Field Wildschut, Calvin University Julie Anne Wildschut is an assistant professor in the Engineering Department. Her research interests include various aspects of sustainability including improving access to clean drinking water, reducing human impacts to waterways, and designing a more sustainable built environment.Matthew Heun, Calvin University ©American Society for Engineering Education
Michael A. Butkus is a professor of environmental engineering at the U.S. Military Academy. His research has been focused on engineering education and advancements in the field of environmental engineering.Lt. Col. Andrew Ross Pfluger P.E., United States Military Academy Lieutenant Colonel Andrew Pfluger, U.S. Army, is an Associate Professor and Academy Professor in the Department of Geography and Environmental Engineering at the United States Military Academy. He currently serves as the director of the Environmental Prog ©American Society for Engineering Education, 2023 Influence of Group Learning in Environmental Engineering: A Curriculum and Course-level
).This situation necessitates environmental engineers who understand transportation engineeringand transportation engineers who are familiar with the solutions for environmental engineeringissues. In this background, an undergraduate environmental engineering program can incorporatecomponents in its curriculum and research to address transportation-related environmentalproblems. This inclusion can be done in two ways: 1. Developing a transportation engineeringminor in an environmental engineering program; 2. Enhancing the existing environmentalengineering curriculum with transportation components. In addition, an EnvironmentalEngineering for Transportation certificate program can also be developed for practicingenvironmental and transportation
politicalsolutions.Engineering for One Planet (EOP), an initiative catalyzed by The Lemelson Foundation andVentureWell, seeks to remove the barriers to integrating sustainability into the engineeringcurriculum while prioritizing Diversity, Equity, Inclusion and Justice principles. The goal is totransform engineering education to ensure that all future engineers across all disciplines areequipped to design, build, and create in environmentally and socially sustainable ways. Criticalto this process is ensuring historically minoritized and marginalized groups become engineersand/or engage in the prioritization and creation of solutions. This paper examines the work ofEOP to date, and approaches needed to accelerate the desired fundamental and systemic changesto
demonstrations that are mapped tolocal curriculum standards. WaterPAL has a dual interface that caters to educators and students.Educators are able to use modules that correspond to core curriculum content that includesvideos, lab exercises, and instructional material. Students can use WaterPAL to engage in anexciting game in which they are able to select an avatar for a water worker and learn aboutcareers in the water/wastewater utilities. The game also exposes participants to the various typesof education required for the different types of work available at these utilities. Figure 2: Layout of the WaterPal app (login screen and activity sample)WaterTALK: The Internet of Things (IoT) is a network of connected objects equipped withsensors
endeavor.More details about courses in this curriculum are available in additional publications [13-17],including a deeper discussion about this specific course [18].Course ContextPrior to running the course, we studied the university’s Energy Master Plan (EMP), learned aboutthe current state of solar energy on campus, and identified four potential new solar projects. Theuniversity currently has a ~1.2 MW photovoltaic (PV) solar system that provides ~7% of theenergy consumed on campus. While a good start, this contribution is low considering theuniversity’s location in Southern California; there is an opportunity to greatly increase campusreliance on solar energy, and the university has committed to reaching carbon neutrality by 2035.The course was
practitioners.Cynthia D. Anderson, Alula Consulting Cynthia (Cindy) Anderson (she/her/hers) is the founder and CEO of Alula Consulting. Cindy specializes in innovative sustainability- and online-focused research and curriculum projects for academic institu- tions, non-profits, government and corporations. Cindy has taught thousands of people through courses and workshops, around the world and online, in the fields of biology, sustainability and biomimicry. She is honored to be a collaborative partner on the Engineering for One Planet initiative since its inception, co- author of the EOP Framework and new framework integration guides, and active EOP Network Member. Cindy holds a MS from Oregon State University, a MEd from Griffith
learning, or computer vision tothose with a background in computer science or a related discipline [47, 48, 49]. And otherworks concentrate on teaching machine learning to non-computer scientists, includingundergraduates [26], business majors [27], artists [28], material science engineers [29], biologists[30], and ecologists [50].However, common challenges faced when teaching machine learning to groups of non-computerscience students included the following: 1. Designing sufficient coding structure and guidelines. Computer science students tend to have personal preferences in their setups; some might prefer coding on sublime and running their code via the command line, while others might prefer coding in what’s known as an integrated
Paper ID #37773Engineering Education for Sustainable Development: A Case Study fromEast China University of Science and TechnologyDr. Huiming Fan, East China University of Science and Technology I am an associate professor from the Institute of Higher Education, East China University of Science and Technology. I got a Ph.D. degree from Zhejiang University in 2014. I was also a visiting scholar in the area of University-Industry Collaboration at North Carolina State University.Weijie GAOShi Siyi ©American Society for Engineering Education, 2023 Engineering Education for Sustainable Development- A Case
/login.aspx?direct=true&db=a9h&AN=156296573&site=ehost-live&scope=site. DOI: 10.1038/s41598-022-07847-4. [11] B. Gavit et al., "Rainwater harvesting structure site suitability using remote sensingand GIS," in Anonymous 2018, . DOI: 10.1007/978-981-10-5801-1_23. [12] H. Karimi and H. Zeinivand, "Integrating runoff map of a spatially distributed modeland thematic layers for identifying potential rainwater harvesting suitability sites using GIStechniques," Geocarto Int., vol. 36, (3), pp. 320-339, 2021.Available: https://utep.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=148480827&site=ehost-live&scope=site. DOI: 10.1080/10106049.2019.1608590. [13] J. Milovanovic, T
interest in engineering education. She develops materials and re- searches best practical classroom approaches for integrating computation and computational thinking in introductory CEE courses; and for promoting teamwork, communication and problem-solving in context, throughout the CEE curriculum.Dr. Ashlynn S. Stillwell, University of Illinois Urbana - Champaign Dr. Ashlynn S. Stillwell is an Associate Professor and the Elaine F. and William J. Hall Excellence Faculty Scholar in Civil and Environmental Engineering at the University of Illinois Urbana-Champaign. Her research focuses on creating sustainable water and energy systems in a policy-relevant context. She earned a B.S. in Chemical Engineering from the