decision was made by this group that the incorporation ofdialogue was critical to students reflecting on their own identity and learning to communicateacross different identities effectively. Therefore, dialogue experts were hired and help co-facilitatethese courses, which are known as Race, Justice and Dialogue courses (RJDC).The aim of the RJDC is to expand and deepen students’ critical consciousness of power anddifference using an antiracist lens, and to promote student antiracist action in the service of socialjustice. Put differently, this course aims to expand students’ antiracist literacy and advocacy inhopes of making Villanova, and beyond, more inclusive, equitable, and just for all.The College of Engineering decided that this antiracist
students read, reflect, and discuss various equity and justice-themedarticles. The second is four weeklong projects over the semester that require a sociotechnicalperspective to complete. Lastly, students complete an open-ended final project that requiresattention to equity dimensions in each project step. This paper will examine the students’responses to the weekly discussion reading on environmental racism.In this study, we focus on one week in which students read and reflected on two articles. Onewas an article from The Atlantic, titled “A New EPA Report Shows that Environmental Racismis Real” (Newkirk II, 2018). The other was an article from Vox titled, “There’s a clear fix tohelping Black communities fight pollution” (Ramirez, 2021). The
, SaP can also support STEM students’ engagement in DEI efforts. For example, in2015, Bunnell et al. [26] developed a course titled “Being Human in STEM (HSTEM)” atAmherst College, which engages students in action research projects on topics related todiversity and inclusion in STEM. In personal reflections, HSTEM course alumni noted that theirparticipation in the course supported them in making sense of their own and other students’experiences of marginalization, combatting feelings of isolation, and feeling empowered aschange agents within the Amherst STEM community [26].3. FrameworksThe design of the JEDI was guided by notions of liberative pedagogy [27]-[28]. From a Freireanperspective, liberative education facilitates conscientização, or
perspectives ofDEI, the team designed the research activities to isolate those factors in the questionnaire andinterviews.MethodsThe project is a sequential mixed methods study combining quantitative and qualitative aspects toexamine connections between involvement in HEP, professional formation, and views of DEI. Thequantitative aspect of this project will be a questionnaire which will guide the development of theinterviews for the qualitative aspect. Current engineering students at Lipscomb as well as alumniof the engineering program will be asked to participate in the questionnaire and interviews.Students will reflect an immediate impact on DEI from a pre/post-questionnaire due toinvolvement in HEP whereas alumni will represent the long-term
courses (Authors 1 and 2) met every other week to discuss the students’ progress andmake instructional adjustments whenever necessary. By meeting to reflect on the students’progress, professors shared the underlying beliefs that graduate students overwhelmingly held.So, a closer look at the survey data and reflections merited further analysis. The data in theseresults point to some of these deficit ideologies in greater detail.Study LimitationsDue to the nature of the case study design [43] (rather than a case-control design), an appropriatecontrol or comparison group that included funded teaching assistants across the engineeringdisciplines that was not required to take the engineering education course was not identified.This study does not aim
within department curricula. PD.2 Examination of disparities related to identityPP.3 Expand the definition and balance of scholarly (racism, sexism, xenophobia, classism, work that is valued in computing departments. ableism, homophobia, transphobia, and more)PP.4 Recognize and address the oppressive nature (e.g., and how they’re reflected in CS education and ableism, elitism, misogyny, and racism) of the the tech industry. hiring, promotion, and tenure processes. PD.3 Reflection on the current state of identity-PP.5 Provide comprehensive, IIC-informed professional inclusive computing in schools, departments, development for faculty, staff
provocative lens toprovoke thoughts from the students by having them reflect and juxtapose their current learningexperience in engineering classrooms with hypothetical environments envisioned by hook. Theoutcome of such reflection and juxtaposition can provide foundational knowledge to assist in theefforts to identify “features” in engineering classrooms and pedagogies that perpetuate cisgenderand heteronormative elements in engineering education. It must be noted that this is a pilotresearch study that strives to produce knowledge to help contribute to future efforts to reimagineengineering classrooms and pedagogies. Thus, no direct engagement with faculty andadministrators is expected in this pilot study.Literature review In engineering
participation in postsecondary spaces. We willdefine disability and describe our choice to use both identity- and person-first language. We willdiscuss our choice to prioritize research that highlights disabled student voices.Our literature review will explore: which disabilities have been the focus of research in highereducation; problematic practices that require increased disabled student self-advocacy rather thansystemic changes; the reasons for students’ reluctance to use accommodations; the weaknesses ofthe accommodations approach; and suggestions for moving beyond accommodations. We willconclude by offering recommendations and reflections for researchers who want to researchdisabled students.The purpose of this paper is to provide a place to
urban communities within the mid-Vancouver Islandregion.1.2 OverviewThis paper is the first in a series that chronicles the development and honing of the survey instrumentand the preliminary results, analyses and observations leading from it. The primary purpose of thispaper is to summarize the iterative process that was involved in creating the surveys. Subsequentpapers will provide detailed analyses of the survey results.The presentation of the development of the survey mirrors our iterative process, which moved frominitial development of a fourth-year survey, follow-up interviews, a reflection based on the responsesand literature, followed by a first-year survey, and follow-up interviews. While the primary objectivefor both the survey and
participant identity, allresponses were collected anonymously to encourage free sharing without repercussions [17].Moreover, respondents indicated who could read their story by answering the question, “Whowould you share this story with?” and they had the option of answering: 1) Everyone 2)Researchers Only, or 3) No one [17]. Participants who chose options 1 and 2 were used to completedata analysis and reported responses to this question were filtered by option 1.SenseMakerData collection was accomplished through the platform SenseMaker. Sensemaking is a researchapproach used to understand complex and ambiguous data such as narratives [18]. This tool usesmixed methods analysis to allow participants to use quantitative responses to reflect on their
organizational change at the graduate level within one university’s College ofEngineering (COE). As members of this center strive to make equity-focused changes within theCOE, we must ensure our thinking considers the decentralized nature of graduate educationwithin the institution. Moreover, we must also grapple with faculty resistance to change,regardless of reason. The purpose of this work-in-progress research study is to report on thedevelopment of a reflection instrument that can be used to assist change leaders in determiningtheir unit’s readiness for change. In particular, we will report on instrument development,piloting results, and the current instrument iteration. We leverage the Competing Values CultureFramework (CVCF) to better understand
receiving social and cultural capital 3. To engage with extant campus programming that allows participants to reflect, and meaningfully address, factors that contribute to STEM persistence across STEM disciplines. a. Participating faculty have opportunities to participate in campus-wide programming, based on their individual interest, to gain a stronger understanding about the experience of students from minoritized populations to enhance their understanding, and utility, of the content they learn in the professional development experience, and to satisfy their elective requirement. b. To create a sustainable
both chromebooks and Ipads that wereprovided by the research team. The group were split in half to ensure less issues with internetconnectivity, where one group worked on the name tag activity while the other world onanswering the engineering question. Week three consisted of a set of reflection questions intended to help youth identifyproblems they may want to solve by the end of the project workshop. We did this using anotherset of poster boards ideation prompts. The first board prompted youth to walk through their dailyroutine and categorize into six different time periods: waking up, morning, noon, late afternoon,night, and bedtime. Youth were encouraged to add in any parts of their routine for every part ofthe day. Research team
teammembers’ expertise as well as their high level of social perceptiveness, resulting in an increase ofparticipation and a decrease in biases amongst team members [4]. Women working in teams alsodemonstrate higher interactive and co-operative work styles that improve a team’s overallprocesses and management skills. Garcia et al. [5]and Ostergaard et al. [6] found an increase indiverse knowledge and perspectives that originated from different career paths due to thecomposition of gender-diverse teams.Some studies also consider that diversity could create discomfort in teams because social identitypredicts that the difference in knowledge, and experience can make communication difficult andincrease competitiveness [6]. This may be reflected in
development can be developed to supportmore inclusive practices in engineering. According to Grayson [34], engineering education in the United States was founded inthe military to address a pressing need for surveying and construction skills. By World War II,engineering schools in the US enrolled a large number of men and trained them in technicalskills needed for the war. There were very few women or people of color enrolled in engineeringschools, particularly since the military was only composed of White men during this time period.These historical exclusionary roots contributed to the formation of an engineering culture thatwas reflected in its disciplinary norms. Tonso’s [35] work in engineering classrooms in the1990s revealed how
institute of Technology. Sriram received a B.E degree in Computer Science and Engineering from the University of Madras and M.S and Ph.D. degrees in Computer Science from Indiana University. During his time at Rose-Hulman, Sriram has served as a consultant in Hadoop and NoSQL systems and has helped a variety of clients in the Media, Insurance, and Telecommunication sectors. In addition to his industrial consulting activities, Sriram maintains an active research profile in data science and education research that has led to over 30 publications or presentations. At Rose-Hulman, Sriram has focused on incorporat- ing reflection, and problem based learning activities in the Software Engineering curriculum. Sriram has
reflection on howour grading practices impact equity mirrors conversations around using standardized testingmechanisms like the SAT, ACT, and GRE for admissions decisions. These high-stakes examsmay hugely impact accessibility of higher education for certain demographics of students[18]–[20]. Mounting criticism of standardized tests have pointed out that performance appearstied to lack of preparation and under-resourced schools, rather than students’ ability to succeed inundergraduate or graduate degree programs [21]–[24]. As underrepresented students are stronglyaffected by using test score thresholds to admit candidates, several movements have proposedthat their use be discontinued.While grades are a deeply ingrained part of higher educational
helpengineers and their communities meet their needs, and clarifies that engineering does notinherently require technocratic solutions to communal problems and needs.PositionalityThe primary and secondary authors are both engineers, labor organizers with the AmericanFederation of Teachers (AFT) local GEO-3550, and children of union members fromworking-class backgrounds. Both were participants in the 2020 GEO-3550 abolitionist strike fora safe and just campus for all [29]. The first author was also taking graduate coursework inintroducing the concepts of engineering education research during the writing of this paper,which provided a critical reflective space for learning and grappling with theoretical frameworksand their applications. We reached out to
qualitativecomments about each other at 4 points during the term. We tracked patterns of coded languageuse [27] amongst selected teams, and did a deep analysis of how coded language increased inintensity across the term. We also assessed how minoritized teammates indicated warnings oftheir marginalization. We have reported some analysis from these data elsewhere [27], [28], [31].Finally, we conducted a diary study during spring 2022, much delayed from our originaltimeline. We conducted in-person initial interviews with diary participants who were recruitedbased on their self-indicated identities as someone from a historically excluded group inengineering, using the device of a career journey map to structure the conversation. We thenasked them to reflect on
University of Washington. Engineering education is her primary area of scholarship, and has been throughout her career. In her work, she currently focuses on the role of reflection in engineering student learning and the relationship of research and practice in engineering education. In recent years, she has been the co-director of the Consortium to Promote Reflection in Engineering Education (CPREE, funded by the Helmsley Charitable Trust), a member of the governing board for the International Research in Engineering Education Network, and an Associate Editor for the Journal of Engineering Education. Dr. Turns has published over 175 journal and conference papers on topics related to engineering education
Abstract In order to inform a discussion of silenced communities within systemic processes, we examine the ASEE Diversity Recognition Program (ADRP) as a step towards amplifying re- flexive and critical activities already occurring within ASEE. In light of recent concern over the ADRP as a means of disrupting minority marginalization in Engineering Education1 , we reflect on the origins of the program as well as how to proactively shift the program’s cultural context to one of greater criticality about Diversity, Equity and Inclusion (DEI) in engineering, broadly. To investigate this more deeply, our research questions for this study were: What have other organizations used to anoint2 member
questions measure the constructs as intended by the authors. However, themajority of validation studies in engineering education do not look at how items function forsubgroups of learners, particularly different racial, ethnic, and cultural groups [1]. Evenframeworks designed to improve the validity evidence provided regarding an assessment’s score,still leave out evaluations of fairness [2]–[4]. To gain a better understanding of how wellengineering assessment contexts are reflective of the diverse experiences of engineering studentsin the U.S., this work-in-progress paper explores the contexts of concept inventories from asociocultural perspective. The purpose of this WIP paper is to identify contexts that are used in three
convey their values and goals. Meaningfulcollaboration between engineers and community partners can empower students, but superficialengagements may undermine their transformative potential. This research uses signaling theoryand the Fitzpatrick Skin Type Scale to assess whether local diversity is reflected on websites andunderscores the importance of diversity representation for credibility in environmental advocacy,offering a valuable approach for educators seeking authentic community partnerships.Key words: Diversity, representation, community partnershipsIntroductionAcross many fields of education, leveraging organizational websites proves instrumental incultivating connections and diversifying partnerships for faculty and students
disclosed in the application. The final participation pool was from four different engineering departments, representedmultiple gender and sexual identities, disability statuses, and racial identities. Additionally, manyof the students in the program were international students. Exact identities and participationdemographic statistics have been withheld to protect participant anonymity.Program Facilitation The program itself was based on the success of other first year mentorship programs at theuniversity [11]. The mentorship program officially began in January of 2024. The mentors werefirst invited to attend a one-hour onboarding and mentorship training, in which they were providedwith program specifics, and we reflected on
influence transgender and gender nonconforming (TGNC) students’interests in and intentions to pursue engineering? This paper aims to provide preliminary insightsinto TGNC students participating in this course by exploring their unique perspectives. Anunderstanding of TGNC student experiences in the e4usa course will help to improve the course,while also exposing the policies and practices in the field of engineering that continue tomarginalize these students.Limitations We acknowledge our small sample size as a major limitation of this quantitativeexploration of TGNC student experiences in a pre-college engineering course. Our sample size issmall, but it is also unfortunately reflective of the overall TGNC representation in engineering.The
hierarchy, which in turn is responsible for supervising and coordinating the work of subordinates. Employment in a bureaucratic organization is expected to be full time and long term, with opportunities for advancement—in short, a career. (p. 3)In many organizations today, such bureaucratic arrangement has morphed into more flexible and“flat” structures (see [3])—but even within those structures, with smaller manager ranks andfewer hierarchical levels, people report to people, i.e., accountability and decision-makingauthority rolls up from contributor to leader.Overall, these relationships reflect an organization’s reporting structure. A reporting structurecaptures three key features of work: chain of command, span of control, and
a better world. The purpose of this work-in-progress (WIP)paper is to explore the experiences of dis/abled, queer, AFAB1 STEM graduate studentsnavigating a culture of productivity in their educational journey. This WIP paper offers a narrowpreview of the findings in a larger exploratory study. This paper begins to untangle some of theintricacies in a short narrative excerpt through a neoliberal-critical, ableism-critical, and queerlens. This paper offers an invitation to the STEM community to collectively reflect on andengage in conversation regarding our cultural norms and assumptions.IntroductionAcademia has been shaped by a culture of productivity. Responding to the scarcity of resources,postsecondary institutions have embraced
, requiring us to consistently reflect on oursubjectivities as researchers. Two of the authors self-identify as neurodivergent learners, whichmakes having two neurotypical learners as collaborators ideal for identifying our reflexivities,including assumptions and overgeneralizations. We consistently review our work for logicalfallacies that influence interpretation. In addition to addressing positionality, the initial surveycollected a relatively small sample size for data analysis, given the institutional size. We chose topursue our personalized implementation method to avoid current institutional barriers regardingspecific topics that would have required lengthy administrative review. However, the process didallow for further insight that we can
participation in engineering [9]. Engineering faculty receive limitedpedagogical training during their academic preparation, and they are even less likely to haveexposure to inclusive teaching practices [10]. Faculty play a critical role in fostering minoritizedstudents’ sense of belonging within engineering culture [11], [12], which has importantimplications for student success [13]. When instructors do not reflect on the impact of theirpositionality on the student experience, they may inadvertently perpetuate systemic biases andinjustices through their academic policies, teaching strategies, and assessment practices [14].Marginalization within engineering education is further impacted by faculty mindsets related tostudent learning [15]. When faculty
, materials utilized, and the contextual environmentsin which everyday ingenuity manifests. Figures 1 to 3 display the participants' words about theeveryday ingenuity examples sourced from the online blog by Marjoram & King [31]categorized into Furniture, Outdoors, Indoors, and Transport.Figure 1 Shower Curtain RailFigure 2 Chair RepairFigure 3 Bicycle Wagon BedThe collection of the blog photos served as a catalyst for participants to recognize and reflect onthe prevalence of everyday ingenuity in their own lives and cultural contexts. It prompteddiscussions among participants and facilitators about their parents' involvement in everydayingenuity and the reuse of items in their childhood households. This exercise helped participantsto recall