of focus include student retention and implementation of innovative pedagogy and technology. She is currently the Assistant Dean of Academic programs overseeing the First Year Courses, Study Abroad Programs, and International Initiatives at Vanderbilt University. She received her Bachelors in Chemical Engineering from the City College of New York and her Doctorate degree at University of Florida in Environmental Engineering. She has over 10 years of experience developing international and national research experiences for STEM majors, as well as project management. American c Society for Engineering Education, 2021 Work in Progress: Developing a
Search:Born out of the shortage of qualified engineers in the U.S. (and around the world), research onengineering education has increased over the past decade and were highlighted in key NationalReports1-2. And while prior studies have focused on why students go into engineering initially3,there has been recognition that selecting an engineering major has not always been based onsignificant understanding of the profession4. It was recognized that an engineering educationalapproach based on a capstone design project offered tangible understanding of the field to studentsbut not until it was too late to reasonably change their intended plan of study, a study by Marinand Associates assessed the most important elements including student preparation
Perspectives on a Freshman Treatment of Electronic SystemsAbstract.The conventional approach to curriculum design is that students start with the basics of scienceand math and gradually progress towards a realistic integration of all their engineering skills in asenior capstone project. That approach is now challenged by changes in the assumed boundaryconditions. Students no longer progress through the program in lock-step. Electronicsapplications have evolved far beyond the components level and many cross-disciplinary skillsare needed. Finally, all students require a level of communications, team-working, trouble-shooting and representational skills that take a long time to mature so it is too late to wait till thesenior year to introduce them. The
andcomplex problems,” can be achieved through educational practices, such as first-year seminars,learning communities, E-Portfolios, service learning courses, internships and capstone projects(7). Barriers that exist for integrative learning in higher education today often point to afragmented undergraduate curriculum (collections of independent classes in general education,specialized study, and electives) and the organization of knowledge into distinct and separatecolleges and departments, “even though scholarship, learning, and life have no such artificialboundaries” (p. 16) (7). Learning communities, capstone experiences, and service learningprojects can transcend these barriers by organizing around interdisciplinary themes, linkingcross
doctoral degrees in Civil En- gineering from North Carolina State University in the USA. Her disciplinary research interests lie in the area of sustainability in asphalt pavements using material considerations, green technologies, and efficient pavement preservation techniques. Her doctoral work focused on improving the performance of recycled asphalt pavements using warm mix asphalt additives. As a postdoctoral scholar at North Carolina State University, she worked on several NCDOT sponsored research projects including developing specifica- tions for crack sealant application and performing field measurements of asphalt emulsion application in tack coats and chip seals. Her undergraduate teaching experience includes
need to be flexible and accessible tostudents in order to help trouble-shoot computer programs, electrical circuits, fabricationtechniques, and mechanical component and system design. While simultaneously encouragingthe ambitious students who may have prior relevant experience, instructors also need to be patientand to coach those students who are not as well-prepared and who feel overwhelmed by the paceof instruction and the difficulty of the projects.Adoption of LWTL as our Freshman Engineering (FE) curriculum has had positive side effects onother parts of our BSME program. Students have asked for more hands-on experiences in otherclasses; some have incorporated Arduino microcontrollers into their senior capstone projects; anda group of
class time, there are active discussions andhands-on learning related to the learned course content. The design thinking course has threeprojects- the first two projects are small projects aimed to help students learn the designthinking process. The third project is a larger course capstone project where students apply thedesign process to solve a real time problem and come up with functional prototypes as a projectoutcome. All the projects are group-based projects and the final project groups are selected bystudents themselves based on their interest area for the project. To understand the context ofthis study, the next section describes a typical class meeting.Daily Routine- Design Thinking Course Students read and complete the
ofthe ABET a-k outcomes. We frame developing the required engineering skills from thefoundation of their individual strengths. Our “One-Minute Engineer” assignment requiresstudents to describe why they are pursuing engineering as a career path. Again, the frameworkof StrengthsFinder helps students clearly express their motivations.Team projects form the framework for ItE course sequence. We sort students into teams withdiverse Strengths [2]. Students utilize team contracts in which they develop team roles based onindividual Strengths [3]. A team mapping exercise reveals that our engineering students tend tooverpopulate the executing and strategic thinking domains of Strengths. Less stereotypicalengineering students with Strengths in
Epsilon). His research interests involve first year engineering course analysis, authentic projects and assessments, and K-12 engineering. Page 26.1280.1 c American Society for Engineering Education, 2015 Providing Authentic Experiences in the First Year: Designing Educational Software in Support of Service Learning ActivitiesIntroductionEducators have often sought to incorporate experiential learning into the curriculum through theuse of authentic, reality-based projects. One mode that has been successfully employed is servicelearning, where classroom instruction is combined with
conversations reported by the faculty indicate that students begin sharing informationthey did not know would help them in their engineering careers. The third course in the sequence being more of a team design course, employs methodsfrom other design courses from FYE institutions in contact with our team (Adams, 2002; Atmanet al., 2007; Crismond & Adams, 2012; Turns et al., 2006). One engagement protocol that mixesbest practices from Adams’ work and is similar to the liberative ones employed by Riley is usedby one faculty member who requires all students to stand while discussing an element of designfrom the project, and the next speaker must amplify the previous student’s statement in terms ofhis own. Students in this scenario must engage
working on advanced or capstone projects, often with industrial sponsors. Sincethe implementation of EGR 100, selected first-year student teams (the number of first-year teamsprecludes us from having all of the teams participate) have also displayed their projects at DesignDay. Participation in Design Day is an opportunity for CoRe Experience students to demonstratetheir academic success in a setting that provides an opportunity to interact with industryprofessionals and members of the faculty. Preparing for this event is another opportunity forstudents to practice their oral and written technical communication. In some cases, the projectsdisplayed at Design Day are the results of a service learning project. In these cases, students getto share
-designed experiment as contributing to their learning, althoughfor this particular lab, students responded on the full range of the scale, with somestudents rating the lab at a 1 and others at a 7. The average rating was 5.6. In the focusgroups, students also disagreed on the value of this lab with one student commenting“[The Student designed labs] took a little bit of extra effort. I think you got more backfrom it, as well, having put so much of ourselves into it. It combined all those skills wegathered throughout the semester.” Other students remarked that the nature of this labmimicked potential future experiences, both in required senior capstone projects and inreal-world work situations. They believed their experiences would be beneficial
engineering arestarting to be explored,2 studies on the effect of K-12 engineering programs on university successremain limited.Numerous venues exist for exposure to engineering prior to matriculation in a collegeengineering program. Elementary engineering programs such as Engineering is Elementary aimto reinforce students understanding of mathematics and science via simple engineering designprojects.3 Students can further explore engineering concepts in middle school classes, and studydiscipline-specific content or complete a capstone design project as part of a high school class orcurriculum like those developed by Project Lead The Way4 or the International Technology andEngineering Educators Association.5 Outside of a formal class setting
education. She was awarded a CAREER grant from NSF to study expert teaching practices in capstone design courses na- tionwide, and is co-PI on several NSF grants to explore gender in engineering, design education, and interdisciplinary collaboration in engineering design.Jacob Preston Moore, Virginia Tech Jacob Moore is a PhD candidate in the Engineering Education PhD program at Virginia Tech. His re- search interests include developing better digital textbooks for engineering and using Rapid Prototyping in education.Deirdre Annaliese Nicole Hunter, Virginia Tech Deirdre Hunter is a doctoral student in the Department of Engineering Education at Virginia Tech.She has a B.S. in Mechanical Engineering from Syracuse
Paper ID #9492The Use Of Peer Evaluations In A Non-Traditional First Year System DesignClassMr. Joseph Pow, Chester F. Carlson Center for Imaging Science, RIT Joe Pow is the Associate Director of the Chester F. Carlson Center for Imaging Science at the Rochester Institute of Technology. He was the designer and first instructor of a new non-traditional project-based course for incoming Imaging Science freshmen which has had a transformational impact on the Cen- ter. Prior to his arrival at RIT, he was a project manager for the Department of Defense, where he was responsible for the development and production of a wide
luncheon was scheduled to alignwith the annual Project Day events in which the graduating seniors set up and present theircapstone projects. These capstone projects are industry sponsored and multi-disciplinary. First-year students were able to interact with the seniors, to ask questions about the program, and tosee the types of projects and real world applications that students in the engineering programwere involved with.During the welcome luncheon the seating for the meal was organized by the sections of theIntroduction to Engineering Design I course, the first of the engineering courses that the studentswill be taking. The faculty member who will be instructing the course is placed at the table withstudents enrolled in their class so that they
Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude
Department of Electrical and Computer Engineering at the University of Illinois where he has been since 2001. His group website may be found at http://optics.beckman.illinois.edu. Carney teaches the ECE senior capstone course and a rotation of three advanced graduate courses in optics. c American Society for Engineering Education, 2017 Paper ID #19835 He holds a Ph.D. in Physics from the University of Rochester (1999) and was a post-doc at Washington University (1999-2001). He is a theorist with research interests in inverse problems, imaging, coherence theory, and other branches of optical physics
, 2017 An Assessment Framework for First- Year Introduction to Engineering Courses AbstractIn this evidence-based practice paper, we describe an assessment framework that applies to first-year introductory engineering courses. First-year engineering courses cover a variety of learningobjectives that address both technical and professional outcomes outlined in ABET. Thesecourses also often involve open-ended design and modeling projects. The assessment of multiplecompetencies along with open-ended design can be a challenging task for educators. In thispaper, we describe a framework that guides instructional processes for effective assessment forstudent learning
, especially in K-12 settings, indicates thatcourse integration within STEM disciplines—e.g. integrating math/engineering, science/math, ortechnology/science— has potential for improving learning in both subjects11. Within engineering education specifically, attempts have also been made to reinforce thefirst-year experience for students. Dym et al.12 described and evaluated how the core principlesof engineering and design are often taught via project-based learning. These authors note anincrease in “corner-stone (design) courses”—foundational, introductory courses, analogous tomore traditional “capstone” courses, but specifically geared toward first-year students—andobserve that these corner-stone courses have been “motivated by an awareness
program.Prof. Stephen J. Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and
apartproject-based learning courses such as cornerstone and capstone experiences. In discussing themotivation for building connections between students and the hands-on situated learningenvironment, they discuss emphasizing “engagement of individuals with the functions and goalsof the community, including interpersonal commitments and ways in which individuals’identities are enhanced or diminished by their participation.” [2] Tonso examines the situatedapproach and its impacts specifically on engineering students and their sense of identity asbelonging within community. “Engineers’ identification with their profession can be critical for persistence, both as a student and then as a professional []. Studies show that a lack of
see the job being done. In addition, the baby-care unit was the basis ofthree short team projects to examine data acquisition, maintenance and management ofsuch a unit. The concepts were easily grasped but since no-one had any experience ofthe activities, the module provided a good starting point to define the subject anddevelop team-working skills as they analyzed the different interpretations of what theyhad seen. The limited time available for each topic was fully occupied with preparation,a visit and a short follow-up review. As a result, only the systems features wereconsidered and the students had no problems in working down from the general systemrequirements to the electronic building blocks. We stopped just at the point where agreat
Paper ID #9569Social Responsibility Attitudes of First Year Engineering Students and theImpact of CoursesDr. Angela R Bielefeldt, University of Colorado, Boulder Angela Bielefeldt, Ph.D., P.E., is a Professor in the Department of Civil, Environmental, & Architec- tural Engineering at the University of Colorado Boulder. She has been on the faculty since 1996. She serves as the ABET Assessment Coordinator for the Department. Professor Bielefeldt teaches introduc- tory courses for first year engineering students, senior capstone design, and environmental engineering specialty courses. She conducts engineering education
." Journal of Engineering Education 103.4 (2014): 525-548.[4] Hmelo, Cindy E., and Xiaodong Lin. "Becoming self-directed learners: Strategy developmentin problem-based learning." Problem-based learning: A research perspective on learninginteractions (2000): 227-250.[5] Mokhtar, Wael, Paul Duesing, and Robert Hildebrand. "Integration of Project-BasedLearning (PBL) into Mechanical Engineering Programs." International Journal of Learning 15.8(2008).[6] Dunlap, Joanna C. "Problem-based learning and self-efficacy: How a capstone courseprepares students for a profession." Educational Technology Research and Development 53.1(2005): 65-83.[7] Wilkerson, Stephen Andrew, et al. "Board 64: ROS as an undergraduate project-basedlearning enabler." 2018 ASEE
. Solnosky is also a licensed Professional Engineer in PA. Ryan’s research interests include: integrated structural design methodolo- gies and processes; Innovative methods for enhancing engineering education; and high performing wall enclosures. These three areas look towards the next generation of building engineering, including how systems are selected, configured and designed.Prof. M. Kevin Parfitt, Pennsylvania State University M. Kevin Parfitt is an award winning teacher in the Department of Architectural Engineering at Penn State. He has over 38 years experience teaching courses ranging from Freshman Seminar to the 5th-Year Senior Thesis (Capstone experience). He is also the AE faculty coordinator for the annual AE
-controlled Unit Operations experiments, and incorporating Design throughout the Chemical Engineering curricu- lum. She currently works as a freelance Engineering Education Consultant and Chemical Engineer. She is the Project Manager for NSF grant #1623105, IUSE/PFE:RED: FACETS: Formation of Accomplished Chemical Engineers for Transforming Society, for which she is advising and coordinating assessment.Dr. Abhaya K. Datye, University of New Mexico Abhaya Datye has been on the faculty at the University of New Mexico after receiving his PhD in Chem- ical Engineering at the University of Michigan in 1984. He is presently Chair of the department and Distinguished Regents Professor of Chemical & Biological Engineering. From
Paper ID #30242Algorithm for Consistent Grading in an Introduction to Engineering CourseProf. Joshua A Enszer, University of Delaware Joshua Enszer is an associate professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical modeling of chemical and environmental systems. His research interests include technology and learning in various incarnations: electronic portfolios as a means for assessment and professional
introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He has co-developed a Materials Concept Inventory and a Chemistry Concept Inventory for assessing conceptual knowledge and change for intro- ductory materials science and chemistry classes. He is currently conducting research on NSF projects in two areas. One is studying how strategies of engagement and feedback with support from internet tools and resources affect conceptual change and associated impact on students’ attitude, achievement, and per- sistence. The other is on the factors that promote persistence and
Education at Arizona State University, and Director of the Division of Curriculum and Instruction. He received his Ph.D. in Educational Psychology from the University of Wisconsin-Madison in 1992, where he also served in the National Center for Research on Mathematical Sciences Education as a postdoctoral scholar.Prof. Stephen J. Krause, Arizona State University Stephen Krause is professor in the Materials Science Program in the Fulton School of Engineering at Arizona State University. He teaches in the areas of introductory materials engineering, polymers and composites, and capstone design. His research interests include evaluating conceptual knowledge, mis- conceptions and technologies to promote conceptual change. He