for improvingretention include several best-practice components, namely: 1) exposure to engineering practice through two new courses employing multidisciplinary projects6, presentations by practicing engineers, presentations by students involved in co- op education, and presentations by senior capstone design project students; 2) the development of the faculty mentoring program for first-year students; 3) the development of a peer advisor mentoring program for first-year students; 4) the development of an industrial mentoring program for first-year students.We are implementing all four initiatives, and this paper focuses on initiative #4, industrialmentoring.1.3 Other Industrial Mentor ProgramsFreshman
improvement efforts. The SEET’s multifaceted initiatives for improvingretention include several best-practice components, namely: 1) exposure to engineering practice through two new courses employing multidisciplinary projects8, presentations by practicing engineers, presentations by students involved in co- op education, and presentations by senior capstone design project students; 2) the development of the faculty mentoring program for first-year students; 3) the development of a peer mentoring program for first-year students; 4) the development of an industrial mentoring program for first-year students.We are implementing all four initiatives, and this paper focuses on initiative #3, peer mentoring
recognized pre-college initiative STEM program, FreshStart, which has served more than 2500 students since its inception. Dr. Wickliff has been blessed since 2013 to work daily in the area of her passion – developing young professionals – in her exciting role at Texas A&M University. She is a Professor of Engineering Practice and Mentor to a group of STEM POSSE Scholars. At Texas A&M University, she has taught Capstone Senior Design, Foundations of Engineering courses, Statics & Dynamics, Ethics and Engineergin, and Engineering Leadership Development courses. She is also the founding director of the Zachry Leadership Program. She has also taught Project Management and Risk Management courses for the University
University of Houston. She is founder of a nationally recognized pre-college initiative program, FreshStart, which has served more than 2000 students since its inception. Dr. Wickliff is blessed to work daily in the area of her passion – developing young professionals – in her role at Texas A&M University. She is a Professor of Engineering Practice. At Texas A&M University, she has taught Capstone Senior Design, Statics & Dynamics, Engineering Ethics, Engineering Leadership and Foundations of Engineering courses. She has also taught Project Management and Risk Management courses for the University of Phoenix. Dr. Wickliff has been honored with University of Houston’s Distinguished Young Engineering Alumni
. Page 15.1143.2So can we attribute part of the success to the “smarter” students we are selecting? To our talentsas faculty? To the support programs? Considering that it is likely a combination of all of theelements listed above –and some others that are less apparent– this new research takes anothertack. The hypothesis, stemming from psychological research, is that success is better predictedby grit than measures of academic skill. The operational definition of grit involves the ability –or propensity– to overcome obstacles, topersist through setbacks, maintain commitment, and to stick to projects and goals over longperiods, even if interest wanes or the going becomes difficult. It is reportedly possible to quantifysome aspects of this
education philosophy is founded on the Project Ori- ented Design Based Learning (PODBL) approach at Deakin University.Mr. Simon William Cavenett Simon Cavenett is a Senior Lecturer and Director of Professional Practice (Engineering) at the School of Engineering at Deakin University. Prior to joining Deakin University in 2007 his 20 year career was based in industry. His career includes a number of significant achievements both in Australia and inter- nationally, particularly involving the design and implementation of leading edge telecommunications and IT technologies. Simon has extensive experience internationally; having worked professionally based the United States for over 11 years prior to returning to Australia to
Paper ID #13373Living-Learning Communities Improve First-Year Engineering Student Aca-demic Performance and Retention at a Small Private UniversityDr. William John Palm IV P.E., Roger Williams University William Palm is Assistant Professor of Engineering at Roger Williams University, where he teaches Engi- neering Graphics and Design, Computer Applications for Engineering, Machine Design, Biomechanics, and Capstone Design. Prior to joining Roger Williams, he worked as a product design engineer and con- sultant and taught at the U.S. Coast Guard Academy and Boston University. He holds a PhD in Mechanical Engineering from MIT
: These required courses in the fall (E101) and spring (E102) allow the college of maintain connectedness with students during the critical first year. College of Engineering Welcome: This event is held within the first weeks of the fall each year for all new engineering students. The goals are to promote the community of Engineering Family, reinforce success strategies, and host a noted keynote speaker [reference here]. First Year Engineering Design Day (FEDD): Associated with the fall E101 course this end-of- semester design day event is modeled after a capstone design event. FEDD is a single-day event where ~350 student teams present and compete with their semester design projects. Promotes connectedness to the college, each
-generation engineer students.Ms. Margo Cousins, University of Texas, Austin Ms. Cousins oversees undergraduate and graduate academic advising at the Department Biomedical Engi- neering at The University of Texas at Austin. She directs the office in strategic academic and professional development advising, capstone projects program, industry partnerships, first-year interest groups, and other special programs.Dr. Cindy D. Wilson, University of Texas, Austin Cindy Wilson is the Director of Academic Projects at the Cockrell School of Engineering at the University of Texas at Austin. She has worked at UT Austin since 2000. She holds a PhD in Higher Education Administration from UT Austin and an MA Degree from Teachers
overall critical thinkingprogram, how this relates to ABET outcomes, and the critical thinking goals of the Introductionto Engineering course. Section three describes the critical thinking instructional component ofthe Introduction to Engineering course, including changes made based on analysis of previousyears implementation. Some conclusions and future directions for the ENGR 100 course arediscussed in Section four.2. A critical thinking agenda for the School of Engineering.The i2a initiative is a broad and comprehensive multi-year plan to improve the overall criticalthinking abilities of students that spans general education courses, discipline specific courses,capstone projects, and community engagement1. Dr. Joe Hagerty, of the Civil
results and confounded datain the studies referenced above.The First-year Engineering ProgramThe Northeastern University College of Engineering, following a successful pilot in 2014,decided to adopt a “Cornerstone to Capstone” curriculum design for all incoming first-yearengineering students. The Cornerstone course incorporates hands-on, project-baseddesign work with computer programming. Previously taught in two separate first-yearcourses, the new Cornerstone course model blends programming and design in a way thatdemonstrates the intertwined nature of the two skills. The project-based Cornerstoneincludes occasional incongruent learning of course content. By highlighting the fact thatproblem-solving in engineering brings together groups of
theirengineering first-year students with a focus on increasing retention. The authors also wouldintroduce some early appreciation to engineering design, the building of models, prototypetesting, and actual implementation of a product/process to first-year students. An innovative wayof illustrating Senior Capstone projects targeted on solving real-world water problems andenvironmental issues will be attempted.AcknowledgmentThe PI and Co-PIs want to thank the National Science Foundation - Division Of UndergraduateEducation for the grant Undergraduate Scholarships for Excellent Education in EnvironmentalEngineering and Water Resources Management (USE4WRM) (Award #1565049) for thefinancial support that could help enhance the recruitment and the retention in
William Palm is Assistant Professor of Engineering at Roger Williams University, where he teaches Engi- neering Graphics and Design, Computer Applications for Engineering, Machine Design, Manufacturing and Assembly, Biomechanics, and Capstone Design. He previously worked as a product design engineer and consultant and taught at the U.S. Coast Guard Academy and Boston University. He holds a PhD in Mechanical Engineering from MIT and is licensed as a Professional Engineer in the Commonwealth of Massachusetts. c American Society for Engineering Education, 2016 Can a Five Minute, Three Question Survey Foretell First-Year Engineering Student Performance and Retention?AbstractThis
expressly devoted to the first-year Engineering Program at Northeastern University. Recently, she has joined the expanding Department of Mechanical and Industrial Engineering at NU to continue teaching Simulation, Facilities Planning, and Human-Machine Systems. She also serves as a Technical Advisor for Senior Capstone Design and graduate-level Challenge Projects in Northeastern’s Gordon Engineering Leadership Program. Dr. Jaeger has been the recipient of numerous awards in engineering education for both teaching and mentoring and has been involved in several engineering educational research initiatives through ASEE and beyond.Dr. Courtney Pfluger, Northeastern University Dr. Courtney Pfluger received her Doctoral degree
Industrial Engineering and an Honors Bachelor in Me- chanical Engineering from the University of Toronto. She also has a Master of Applied Science in Collab- orative Program in Engineering Education. Her thesis investigated team level factors affecting innovation in multidisciplinary capstone design course. In addition to her research in engineering education, she has been involved as a teaching assistance with more than four engineering design courses from first year to fourth year.Prof. Chirag Variawa, University of Toronto Professor Chirag Variawa is Director of First-year Curriculum at the University of Toronto, Canada. He received his Doctorate in Industrial Engineering, focusing on Language Inclusivity in