Paper ID #30811Relationship between Gen Z Engineering Students’ Personality Types andTopics of Technical InterestDr. Goli Nossoni, University of New Haven Dr. Goli Nossoni is currently an Associate Professor in the Department of Civil and Environmental En- gineering at University of New Haven. She received her M.S. and Ph.D. from Michigan State University in Structural Engineering and Materials Science. In addition to her interest in engineering education, Dr. Nossoni specializes in the research area of materials especially concrete and corrosion of steel inside concrete.Dr. Ronald S Harichandran P.E., University of New
Paper ID #26427Work in Progress: A Path to Graduation: Helping First-Year Low Income,Rural STEM Students SucceedDr. Carol S. Gattis, University of Arkansas Dr. Carol Gattis is the Associate Dean Emeritus of the Honors College and an adjunct Associate Pro- fessor of Industrial Engineering at the University of Arkansas. Her academic research focuses on STEM education, developing programs for the recruitment, retention and graduation of a diverse population of students. Carol also serves as a consultant specializing in new program development and grants. She earned her bachelor’s, master’s and Ph.D. degrees in Electrical
the connection between the two.Ada Barach, Ohio State University Ada recently graduated from The Ohio State University with a B.S. in Computer Science and Engineering. Her undergraduate research was in coding education for first-year students. Ada is currently pursuing a PhD in theoretical computer science at Ohio State.Connor Jenkins, Ohio State University Connor Jenkins is currently an undergraduate student pursuing a B.S. in Electrical and Computer En- gineering at The Ohio State University. His engineering education research interests include first-year engineering, teaching assistant programs, and technical communication education methods.Ms. Serendipity S. Gunawardena, Ohio State University Sery is an
University and Assistant Dean for Student Advancement and Program Assessment in the College of Engineering. Dr. Briedis is involved in several areas of education research including student retention, curriculum redesign, and the use of technology in the classroom. She has been involved in NSF-funded research in the areas of integration of computation in engineering curricula and in developing comprehensive strategies to retain early engineering students. She is active nationally and internationally in engineering accreditation and is a Fellow of ABET, ASEE, and AIChE.Dr. S. Patrick Walton, Michigan State University S. Patrick Walton received his B.ChE. from Georgia Tech, where he began his biomedical research career in
Paper ID #23490Work in Progress: Developing a Model for Student-led Peer Mentorship Pro-gramsDr. Krystal S. Corbett, Louisiana Tech University Dr. Krystal Corbett is a lecturer for the Mechanical Engineering Department at Louisiana Tech Univer- sity. She teaches in their prestigious Living with the Lab first year program as well as other mechanical engineering related courses. She received her B.S. and M.S. in Mechanical Engineering (2008/2010), M.S. in Mathematics (2012), and Ph.D. in Engineering Education (2012) at Louisiana Tech University. Formerly, she was the Director of Curricula at the Cyber Innovation Center (CIC
Paper ID #26188Impact of Engineering Design-Focused Summer Academy Experience on In-terest Toward STEM Learning and Careers (Evaluation, Diversity)Dr. Kuldeep S. Rawat, Elizabeth City State University KULDEEP S. RAWAT is currently the Dean of Life, Physical Sciences, Mathematics and Technology and Director of Aviation Science program at Elizabeth City State University (ECSU).He has earned an M.S. in Computer Science, 2001, an M.S. in Computer Engineering, 2003; and, a Ph.D. in Computer Engineering, 2005, from the Center for Advanced Computer Studies (CACS) at University of Louisiana-Lafayette. He serves as the Site
. More recently, He has mentored numerous midshipmen through independent research projects and has directed two Tri- dent Scholars, the Naval Academy’s flagship research program. He has published over 50 journal and conference articles on these topics. Dr. Barton is actively involved in curriculum development and program assessment. He chairs ASME Committee on Engineering Accreditation. He serves a Commissioner for Engineering Accreditation Com- mission of ABET, Inc. and was a program evaluator for 6 six years prior to joining the commission. Dr. Barton holds a professional engineering license in the State Maryland. He is a member of the Board of Education, ASME.Dr. Kenneth S. Ball P.E., George Mason University
Paper ID #12230Spatial Visualization Skills Intervention for First Year Engineering Students:Everyone’s a Winner!Dr. S. Patrick Walton, Michigan State University S. Patrick Walton received his B.ChE. from Georgia Tech, where he began his biomedical research career in the Cardiovascular Fluid Dynamics Laboratory. He then attended MIT where he earned his M.S. and Sc.D. while working jointly with researchers at the Shriners Burns Hospital and Massachusetts General Hospital. While at MIT, he was awarded a Shell Foundation Fellowship and was an NIH biotechnology Predoctoral Trainee. Upon completion of his doctoral studies, he
at the college of engineering, computer science and technology (ECST).Prof. Paul S Nerenberg, California State University, Los Angeles Dr. Paul S. Nerenberg is currently an Assistant Professor of Physics and Biology at California State University, Los Angeles. He received his PhD in Physics from MIT and has a strong interest in improving the quality of introductory physics education, particularly for students who enter college with little or no previous physics coursework.Ni Li, Northwestern Polytechnial University Ni Li, Ph.D., was an Assistant Professor of the Department of Mechanical Engineering at California State University, Los Angeles. Now, she is working in the school of Aeronautics at Northwestern
Science and in Mathematics, and M.S. and Ph.D. (1984) in Computer Science, all from the University of Pittsburgh. Dr. Altman specializes in optimization algorithms, formal language theory, and complex system simulation. He has published over 75 journal, conference, and technical papers. Presently, Dr. Altman is a Professor of Computer Science at CU Denver and has been an active ABET Program Evaluator (CAC) since 2008. His current research focus is on STEM and more specifically, Engineering Education.Dr. Michael S. Jacobson, University of Colorado Denver Professor of Mathematics for over 40 years, with a keen interest in STEM Education and improving student success.Prof. Katherine Goodman, University of Colorado Denver
Paper ID #18887Forget Diversity, Our Project is DueMr. Hector Enrique Rodriguez-Simmonds, Purdue University - Engineering Education Raised in South Florida, born in Mexico. Half Colombian and half Mexican; proud MexiColombian. H´ector earned his MS in Computer Engineering and is currently pursuing a PhD in Engineering Education, both from Purdue University. His research interests are in investigating the experiences of LGBTQ+ students in engineering, tapping into critical methodologies and methods for conducting and analyzing research, and exploring embodied cognition.Mr. Nelson S. Pearson, University of Nevada, Reno
apawley@purdue.edu.Dr. Shawn S Jordan, Arizona State University, Polytechnic campus SHAWN JORDAN, Ph.D. is an Assistant Professor of engineering in the Ira A. Fulton Schools of En- gineering at Arizona State University. He teaches context-centered electrical engineering and embedded systems design courses, and studies the use of context in both K-12 and undergraduate engineering design education. He received his Ph.D. in Engineering Education (2010) and M.S./B.S. in Electrical and Com- puter Engineering from Purdue University. Dr. Jordan is PI on several NSF-funded projects related to design, including an NSF Early CAREER Award entitled ”CAREER: Engineering Design Across Navajo Culture, Community, and Society” and
published over 75 journal, conference, and technical papers. Presently, Dr. Altman is a Professor of Computer Science at CU Denver and has been an active ABET Program Evaluator (CAC) since 2008. His current research focus is on STEM and more specifically, Engineering Education.Prof. Katherine Goodman, University of Colorado Denver Katherine Goodman is assistant professor at the University of Colorado Denver, and the associate director of Inworks, an interdisciplinary innovation lab. Her research focuses on transformative experiences in engineering education. She is currently division chair of the Technological and Engineering Literacy - Philosophy of Engineering Division (TELPhE).Dr. Michael S. Jacobson, University of
✉✐✈♣❦✇❦♣t❦❤ ♣❦①②❦♥❥❦ ♠♣ ❧♠③♠❧❦❧ ♠♥t✐ ④✐②❤ s⑤⑥④✈♣❦✇❦♣t❦❤ ⑦⑥✐❥⑧♣ ✉♠ts ts❦ ④♠❤♣t s⑤⑥④✈⑨⑩❶⑩⑨❷⑩❸ ❹❺❻❼❽ ❹⑩❾❿➀ ❷➁⑩ ➂❻❸⑩ ➂❻➃❸⑨⑩➄ ❷➁❾⑨ ➅➆➅⑩❸ ➇❻❼➃⑨⑩⑨ ❻❿ ❷➁⑩ ➂❻❸⑩ ➂❻➃❸⑨⑩➈ ➉➁⑩ ➂❻❸⑩ ➂❻➃❸⑨⑩ ❾⑨➊➋➌➍➋➎➍➎ ➌➏ ➐➏➑➍➒ ➓➔➌➍➒➊➔→ ➣➍➒➓➔➋➍ ➌➏ ➌↔➍ ↕➊➑➍ ➍➋➣➊➋➍➍➒➊➋➣ ➙➒➏➣➒➔➓➛ ➔➑➔➊→➔➜→➍ ➔➌ ➝➊→→➔➋➏➑➔ ➞➋➊➑➍➒➛➊➌➟➠➡➢➤➥➦➡➧➨➩ ➡➦➫➦➨ ➧➭➯ ➤➭➫➦➲➳➭➥➤➭➵➧➨➩ ➡➳➥➸➺➵➤➲➩ ➤➨➤➡➵➲➦➡➧➨ ➧➭➯ ➥➤➡➢➧➭➦➡➧➨➻➼➽➾➚➪ ➶➹➶➘➴ ➷➬➮➱➪➘➪ ➬✃ ❐➾➴➘➘ ❒➹❮➬➴ ❐➬➶➚➮ ➶➬➚✃❐➪❰ Ï Ð ÑÒÓÔÕÓÓÒÖ× ÖØ ÙÚÛ ÜÛÓÓÖ×ÓÝÜÛÞß×ÛÑ Ò× àÖßáÒ×â àÒÙÚ ØÒßÓÙÝãÛÞß Û×âÒ×ÛÛßÒ×â ÓÙÕÑÛ×ÙÓ ÑÕßÒ×â ÙÚÛ äåæ çèéêä ëìéë ëìè íåêäëîçèéê èæïèêåèðñè ìéä òèèð ëéóôìëõ ö ÷ øùúûüúúùýþ ýÿ þ úú✁úú✂✁þ✄ ✄ýý☎ ✆ ú✁ø ýþ ✝✞✁✟ þø ✝ýú✄✟✄✁ú✄ùþ✠ ✄ý ✠ ü✠✁ ú✄üø✁þ✄ ✝✁✞ÿý✞✂ þû
Computer Engineering & Computer Science student at Northeastern University. c American Society for Engineering Education, 2019 Community Engagement and Service-Learning: Putting faces to a community to create better engineersAbstractThis complete evidence-based practice paper presents how Service-Learning (S-L) helped first-year engineering students attending an urban institution to grow their concept of community.When S-L is incorporated into a first-year engineering design course, students expand theirlearning as they work and teach in the community. In addition, students get a chance to see andexperience the greater community to which they belong. Through S-L, engineering students
child plays with, what books their child reads, and where their childgoes to school. As a result, a student’s exposure and perception of different career disciplinesand professional roles is highly influenced by the introductory actions of parents.Parents themselves can serve as role models for engineering if they themselves are engineers [4].Studies have found that children are often more literate in the professions of their parents and asa result occupational inheritance may occur. This phenomenon has been found to occur infamilies in which a parent, sibling, or other relative(s) are engineers as well as in families withmedical professionals and lawyers. [15]Parents also provide support for their children when selecting majors [4]. In fact
of origami task (O-folding instructions 19 . LI-2).Modules were provided online via the course management system. Participants had one week tocomplete each module and submit the appropriate task deliverable(s) via the online system. Thedeliverable for each origami-based module was a photograph of the object(s) they created (Figure2). The deliverable for each CAD-based module was a SketchUp file of their final drawing(s)(Figure 4). Figure 4: Deliverable of CAD task (C-LI-1).Figure 3: Example of CAD task (C-LI-1) mul-tiview orthographic drawings
, S. A. (1999). Developing 3D spatial visualization skills. Engineering Design Graphics Journal, 63(2), 21–32.[6] Olkun, S. (2003, April). Making connections: Improving spatial abilities with engineering drawing activities. International Journal of Mathematics Teaching and Learning, 1–10.[7] Sutton, K., & Williams, A. (2008). Developing a discipline-based measure of visualization. UniServe Science Proceedings, 115–20.[8] Martín-Dorta, N., Saorín, S. J., & Contero, M. (2008). Development of a fast remedial course to improve the spatial abilities of engineering students. Journal of Engineering Education, 97(4), 505–13.[9] Guay, R. B. (1977). Purdue Spatial Visualization Test: Rotations. West Lafayette, IN: Purdue Research
to show the basic retention numbers andthen allowed for further deeper exploration of student retention by showing the retention brokenout by many different subcategories of students.IntroductionLearning communities have a long history including the Meiklejohn “Experimental College” atthe University of Wisconsin in 1920. In the past couple of decades they have emerged as a wayto improve the retention for first year students.During the 1980’s and 1990’s there was a renewed interest in improving undergraduateeducation in the United States. The Boyer Commission in 1998 released its report, ReinventingUndergraduate Education: A Blueprint for America's Research Universities1, on the state ofundergraduate education. It recommended 10 ways to
, as well as several years of electrical and mechanical engineering design experience as a practicing engineer. He received his Bachelor of Science degree in Engineering from Swarthmore College, his Master’s of Education degree from the University of Massachusetts, and a Master’s of Science in Mechanical Engineering and Doctorate in Engineering Education from Purdue University.Ms. Ann E. Delaney, Boise State University Ann Delaney is the Diversity, Equity, and Inclusion Coordinator and the SAGE Scholars Program Director in the College of Engineering at Boise State University. SAGE Scholars is an NSF-funded S-STEM scholarship program which is part of the Redshirting in Engineering Consortium. As part of this program
Research and Education c American Society for Engineering Education, 2020 Implementation of an Introductory Engineering Course and its Impact on Students’ Academic Success and RetentionAbstractThis Complete Research paper will describe the implementation of an introductory course(ENGR194) for first semester engineering students. The course is meant to improve retention andacademic success of engineering first-year students in the College of Engineering at the Universityof Illinois at Chicago. The implementation of this course is part of an ongoing National ScienceFoundation (NSF) Scholarships in Science, Technology, Engineering, and Math (S-STEM)project. This paper reports on the impact of combinatorial
Year Summer Experience (FYSE) program is a three-week residential summerorientation program focused on the development and strengthening of math-intensiveengineering problem solving skills. All new students offered admission to the School ofEngineering and students who applied to engineering but were instead admitted to the Divisionof Letters and Sciences (L&S) were invited to participate in the program. Recruitment andselection of participants is geared toward inclusion of women, racial/ethnic minorities, first-generation college students, and engineering admits with relatively weak mathematicspreparation. Approximately 40-60 first-year students participate in the program each summer.The participants are required to live in the provided
switched for Workshop 2 such that the participants will complete 8 CADmodules first and then the 4 origami modules. Workshop 3 will consist of 12 origami modules andWorkshop 4 will consist of 12 CAD modules with each module increasing in complexity anddifficulty. All 4 workshops will be deployed in Fall 2018 to first-year female engineering student. Itis estimated that there will be 50 - 75 participants in each workshop cohort.References [1] M. S. Khine, Visual-spatial Ability in STEM Education. Switzerland: Springer International Publishing, 2016. [2] M. C. Linn and A. C. Petersen, “Emergence and characterization of sex differences in spatial ability: A meta-analysis,” Child development, vol. 56, no. 6, pp. 1479–1498, 1985. [3] G. Park, D
. Ralston, University of Louisville Dr. Patricia A. S. Ralston is Professor and Chair of the Department of Engineering Fundamentals at the University of Louisville. She received her B.S., MEng, and PhD degrees in chemical engineering from the University of Louisville. Dr. Ralston teaches undergraduate engineering mathematics and is currently involved in educational research on the effective use of technology in engineering education, the incorpo- ration of critical thinking in undergraduate engineering education, and retention of engineering students. She leads a research group whose goal is to foster active interdisciplinary research which investigates learning and motivation and whose findings will inform the
group as a senior engineer, and later brought his real-world expertise back into the classroom at Purdue University Calumet. He is currently a Clinical Associate Professor at the University of Illinois at Chicago where he enjoys success in teaching and education research.Prof. Jeremiah Abiade c American Society for Engineering Education, 2019 Execution Details and Assessment Results of a Summer Bridge Program for First-year Engineering StudentsAbstractThis paper reports the execution details and the summary assessment of a Summer Bridge Program(SBP) that is a part of an ongoing National Science Foundation (NSF) Scholarships in Science,Technology, Engineering, and Math (S-STEM
study is informed by the need to address the well-documentedunderrepresentation of low-socioeconomic status (SES) and minoritized students in engineeringand other related careers [1]–[3]. Researchers advanced that, in addition to intellectual andscientific reasons, low-income students are attracted to the major by the potential prospect ofemployment after completing a degree [1], [4]. Financial considerations are critical for low-SESengineering students; this includes considerations of financial aid and differential tuition [5].Programs such as the National Science Foundation Scholarships in STEM (S-STEM) have beenimplemented to address financial assistance of low-SES students. This study is part of alongitudinal five-year S-STEM project
a Mathematician and Computer Systems Analyst for the U. S. Department of Energy as well as more than 25 years of experience teaching mathematics, statistics, computer science, and first-year engineering courses in higher education institutions. Currently, she leads a team of faculty who are dedicated to providing first year engineering students with a high- quality, challenging, and engaging educational experience with the necessary advising, mentoring, and academic support to facilitate their transition to university life and to prepare them for success in their engineering discipline majors and future careers. American c Society for Engineering
, and A. S. Malik, “The influences of emotion on learning and memory,” Front. Psychol., vol. 8, no. 1454, 2017.[3] M. J. Riemer, “Integrating emotional intelligence into engineering education,” World Trans. Eng. Technol. Educ., vol. 2, no. 2, pp. 189–194, 2003.[4] D. Kim and B. K. Jesiek, “Work-in-Progress: Emotion and intuition in engineering students’ ethical decision-making and implications for engineering ethics education,” 2019.[5] A. Bandura, Self-Efficacy: The Exercise of Control. New York, NY: Freeman, 1997.[6] F. Pajares, “Self-efficacy in academic settings,” in American Educational Research Association, 1995.[7] D. W. McMillan and D. M. Chavis, “Sense of community: A definition and theory,” J
students: one student reported low participation inboth projects and s/he attended the classes about half in person and half online, which mighthave contributed to the low participation. The other student reported low participation in thesecond project although s/he attended the classes fully in person and s/he reported fullparticipation in the first project. There was no data to explain the reason, but project 2 wasstudent-driven by the team leader who came up with that project topic. As instructors, we need toencourage all students to contribute to the final design and prototyping.Course ManagementA mixture of teaching modalities was used in this course, as explained in the Course Setupsection.Depending on the course content, such as for
., Falconer, K., Benford, R., Bloom, I., & Judson, E. (2000). Reformed Teaching Observation Protocol (RTOP): Training guide. (ACEPT Technical Report No. IN00-2). Tempe, AZ: Arizona Collaborative for Excellence in the Preparation of Teachers.[3] Judson, E. & Sawada D. (2002). “Tracking Transfer of Reform Methodology from Science and Math College Courses to the Teaching Style of Beginning Teachers of Grades 5-12,” Journal of Mathematics and Science: Collaborative Explorations, vol. 5, pp. 189-207.[4] Ross, L., Judson, E., Krause, S. J., Ankeny, C. J., Culbertson, R. J., & Hjelmstad, K. D. (2017, June). “Relationships between engineering faculty beliefs and classroom practices,” in 2017 Proceedings of the