] hasbeen used as the basis to develop a construct for engineering identity development within theengineering education community. The science identity model advances that science identitydevelops intersectional and over time. Research on engineering identity emerged from variousacademic strands, including psychology and sociology. The definition of identity in this study isviewed through the social lens. Identity is defined as "being recognized as a certain 'kind ofperson' in a given context" [16, p.99]. The given context focuses on individual socialperformances rather than their uniqueness as a person. Our context is this study is specific toengineering and how students self-described and are seen within the context of engineering
Paper ID #16964Leadership in Practice: A Model for Building Strong Academic Foundationsin a Residential Learning CommunityMs. Noel Kathleen Hennessey, The University of Arizona Noel Hennessey is the Coordinator for Outreach, Recruitment and Retention in the College of Engineer- ing at the University of Arizona. She is responsible for first-year experience through residential education, student development and retention, and designing outreach activities and events for undergraduate recruit- ment. Noel earned a Master of Arts degree in Higher Education from the University of Arizona in 2015 and is currently pursuing a
identify theircultural capital from which to develop their future possible selves as engineers. Throughout thefirst two years, students will be mentored to foster their engineering identity while focusing onsupport for transition to college. Support for transition to college includes encouragement andhelp to form peer learning study groups, study habit workshops, note-taking methods, timemanagement, and financial aid-education. Support for engineering identity development in year1, include opportunities to meet industry professionals, visits to industry sites to learn first-handwhat engineering workplaces look like, engage with engineering leaders through a speakerseries, and attend recurring choice-based 2-hour technical and soft skills building
within biomedical engineering, she was elected Fellow in the Biomedical Engineering Society and the American Society of Engineering Educa- tion. c American Society for Engineering Education, 2018 Tracking Skills Development and Self-Efficacy in a New First-Year Engineering Design CourseAbstract This evidence-based practice paper describes the development and implementation ofsurveys and a focus group to understand the impact of a new first-year engineering design course.With the intent of adding a practical design experience for first-year students, the EngineeringDesign and Communication course was introduced as a pilot program in the fall of 2017 at
Paper ID #16483Student Success through College of Engineering Freshman Year ExperienceProgramProf. John Ross Tapia, New Mexico State University John Ross Tapia has a focus on student engagement and success for all students in their coursework. John Ross is an assistant professor with the Engineering Technology Department at New Mexico State University. He teaches Civil Engineering Technology courses and is the faculty lead for the Freshman Year Experience/ENGR100 course. His research focus is engineering education. Prior to working at NMSU, John worked at New Mexico’s first Early College High school and helped develop the
looked at knowledge building in coursework and found that students’ abilities toconnect this to imagined futures was an important factor in their motivation to succeed [3]. Moregenerally, the specific information that instructors emphasize with respect to the future in theclassroom has been shown to be important to students [4].The role of first-year engineering programs also may play a role in students’ continuation andcompletion of an engineering degree and may contribute to a higher graduation rate thanprograms with a direct matriculation [5]. However, these programs are not without challenges.Notable concerns include a potential for a higher student workload, in a time whenadministrations are seeking to reduce this [6]. It has also been
. 12[5] O. Pierrakos, T. K. Beam, J. Constantz, A. Johri, and R. Anderson, “On the Development of aProfessional Identity: Engineering Persisters Vs. Engineering Switchers.” ASEE/IEEE Frontiersin Education Conference, San Antonio, TX, 2009.[6] M.W. Ohland, S. D. Sheppard, G. Lichtenstein, O. Eris, D. Charchra, and R.A. Layton,“Persistence Engagement, and Migration in Engineering Programs,” Journal of EngineeringEducation, vol. 97, no. 3, pp. 259-278, 2008.[7] C. B. Zoltowski, P. M. Buzzanell, A. O. Brightman, D. Torres, and S. M. Eddington,“Understanding the Professional Formation of Engineers through the Lens of Design Thinking:Unpacking the Wicked Problem of Diversity and Inclusion,” ASEE Annual Conference andExposition, Columbus, OH, June
Paper ID #22582Using Design Challenges to Develop Empathy in First-year CoursesJordan Orion James, University of New Mexico Jordan O. James is a Native American Ph.D. learning sciences student and lecturer at the University of New Mexico’s School of Architecture and Planning in the Community & Regional Planning program. He has served as a graduate research assistant on an NSF-funded project, Revolutionizing Engineering De- partments, and has been recognized as a Graduate Studies student spotlight recipient and teaching scholar. Jordan studies learning in authentic, real-world conditions utilizing Design Based Research
2017, the course was instructed by twodoctoral graduate student instructors, and supported by undergraduate teaching assistants and asenior teaching fellow. Students have daily homework assignments, computer lab work, exams,and an engineering-related group project and final presentation. Upper-level engineeringstudents, hired as tutors, assist students each week night to provide guidance and support onhomework assignments and projects. In addition to the academic components of the FYSE program, the program seeks tocultivate community and a network of support among each FYSE cohort (see Appendix B forsample schedule). Team building is strengthened through various team-building activities, suchas a group outdoor challenge-by-choice course
Learning (PAL) programs and provides support to the General Engi- neering Learning Community. She is also co-developer of Entangled Learning, a model of rigorously- documented, self-directed learning in communities of practice. She has an M.A. in Music from The Pennsylvania State University and an M.L.S. from Indiana University. c American Society for Engineering Education, 2018 Supporting Student Learning Through Peer-Led Course Support InitiativesAbstractThis evidence-based practice paper outlines the three course support initiatives in place atClemson University to support student learning. In recognizing variation in student needs andlearning preferences, our
student in the School of Engineering at The Univer- sity of Oklahoma. Her passion for engineering education stems from her basic curiosity to develop more effective engineering curriculum to help students to meet their professional demands. This motivated her to take part in engineering education research.Mr. Dan Thomas Carlton, University of Oklahoma, College of Aerospace and Mechanical Engineering Dan Carlton is pursuing his Bachelor’s in Aerospace Engineering at the University of Oklahoma, where he is expected to graduate in 2016. He is a Midshipman in the Naval ROTC unit at the University of Oklahoma, and is involved in undergraduate fellowship program sponsored by NASA and the Oklahoma Geospatial and Space Grant
, teen pregnancy prevention/positive youth development programming, and public health eval- uation.Dr. Ann Saterbak, Duke University Ann Saterbak is Professor of the Practice in the Biomedical Department and Director of First-Year En- gineering at Duke University. Saterbak is the lead author of the textbook, Bioengineering Fundamen- tals. Saterbak’s outstanding teaching was recognized through university-wide and departmental teaching awards. In 2013, Saterbak received the ASEE Biomedical Engineering Division Theo C. Pilkington Out- standing Educator Award. For her contribution to education within biomedical engineering, she was elected Fellow in the Biomedical Engineering Society and the American Society of
attitudes towards becoming engineers, their problem solving processes, and cultural fit. His education includes a B.S. in Biomedical Engineering from Rose-Hulman Institute of Technology, a M.S. in Bioengineering and Ph.D. in Engineer- ing and Science Education from Clemson University.Dr. Allison Godwin, Purdue University, West Lafayette (College of Engineering) Allison Godwin, Ph.D. is an Assistant Professor of Engineering Education at Purdue University. Her research focuses what factors influence diverse students to choose engineering and stay in engineering through their careers and how different experiences within the practice and culture of engineering foster or hinder belongingness and identity development. Dr
and struggle to achieve parity over their educational career (MacPhee, Farro, andCanetto 2013).The qualitative interviews were structured to reflect the hypothesized theory (see Eisenhardt1989) of social belonging as presented in Error! Reference source not found.. The researchersconducting the interviews were all graduates of the engineering class in this study and had servedas a teaching assistant for this course at some time in the previous years. An interviewquestionnaire was developed to reflect the social belonging framework and to align with thequalitative research principles outlined by Corbin and Strauss (2008). A pre-interview reviewwas conducted among all interviewers to answer questions and align expectation and post-interview
-Birkhimer’s research has focused on broadening participation of women and underrepresented group in STEM fields. Recently, she has been investigating the intersec- tion of education and career path with cultural identity and is developing strategies to inform programming and policies that facilitate recruitment and retention of underrepresented populations in academia. In 2012 Dr. Zurn-Birkhimer was presented with an Outstanding Alumni Award from the Department of Earth, At- mospheric, and Planetary Sciences at Purdue University. She also serves on their Alumni Advisory Board. Dr. Zurn-Birkhimer earned her B.S. in Mathematics from the University of Minnesota, and an M.S. and Ph.D. in Atmospheric Science from Purdue
Clemson University. Broadly, her research interests include self-directed learning and motivation, learning within communities of prac- tice, the cultural influence on informal and formal learning, and intergenerational learning. Abby currently works as a graduate assistant for the General Engineering Learning Community, which supports freshmen engineering students in building effective learning strategies that are transferable to the workforce, includ- ing collaboration, self-regulation, and reflection. c American Society for Engineering Education, 2018 Work in Progress: Strategic, Translational Retention Initiatives to Promote Engineering SuccessAbstractThis Work in
identities and life experiences as well as engage in dialogueabout “societal issues such as politics, racism, religion, and culture that are often flashpoints forpolarization and social conflict” [3]. This process typically focuses on goals of advancingcompassion, empathy, cross-cultural understanding, advocacy, social justice, and social change.Research has shown that intergroup dialogue in the higher education context can have significantand positive impacts on student development, increasing student motivation, learning, andacademic achievement [1] - [2], [5]. Through engagement in intergroup dialogue, studentsbecome more self-aware in their own social identities, and build knowledge about other socialidentity groups. By developing this knowledge
discipline-specific groups. The next component was integrating the use of community building strategies in the SI Leaders’ lesson plans. Leaders create their lesson plans the week before conducting sessions and submit them to their graduate supervisor or SI Coordinator for feedback and revision. The lesson plan template for fall 2020 was edited to include a section where the SI Leaders were required to detail and describe the community-building strategy they chose to use that week. As each session had the same cohort of students, the SI Leaders were able to conduct activities that went beyond the superficial icebreaker and develop a cohesive community within each cohort. We determined that limiting the number of students to 12 per
research interests include retention, mathematics and materials science teaching and learning, first-year programs, accreditation, and faculty development.Prof. Kevin Pitts, University of Illinois, Urbana-Champaign Vice Provost for Undergraduate Education, Professor of PhysicsDr. Michelle Ferrez, University of California, San Diego Michelle is currently the Director of the IDEA Engineering Student Center at UC San Diego, Jacobs School of Engineering (Inclusion-Diversity-Excellence-Achievement). Dr. Ferrez has twenty three years of experience on diversity in STEM access, retention, and success programs in higher education (4 year and community colleges), K-12 and graduate student pipeline programs, and the role of four
retention and progression through STEM pathways. This research team found itself, like many other institutions and instructors, at thecrossroads of online learning environments, social and educational inequities and historicallydifficult course content, with all the difficulties and opportunities that these components afford.This unique course taught online for the first time, with a depth and breadth of programmingcontent, can be challenging for all students but can especially halt underrepresented studentsprogress through their engineering coursework and ultimately prevent them from achievingsuccess in engineering. In an already challenging semester -- a pandemic which causeduniversity closure and completely online instruction -- our
. A member of the Grand Portage Band of the Lake Superior Chippewa Jordan obtained both his Masters of Community & Regional Planning and Bachelors of Media Arts from the University of New Mexico, Albuquerque where he lives with his wife and three daughters.Mr. Nicolai Loner, University of New Mexico c American Society for Engineering Education, 2017 Asset-based design projects in a freshman level courseAbstractThis Complete Research paper describes how we identified diverse student assets and redesigneda first year course to develop professional engineering identity. Despite many efforts to diversifyengineering, first-generation college attendees, non-traditional students, and students
likelihood to accomplish a task.Physiological states that are experienced by an individual during an activity such as emotions orstress also have been shown to impact one’s self-efficacy [15].In an effort to relate the self-efficacy aspect of cognitive career theory to engineering students’ andengineers’ perceptions of important skills and abilities Winters et al. [9] conducted a longitudinalstudy. This research study questioned engineering students about their perceived importance ofvarious abilities such as math, science, and business. The individuals were surveyed throughouttheir undergraduate education and then again four years post-graduation. The researchersdetermined that as students’ progress through their undergraduate engineering education
engineering, science, and technology to include new forms of communication and problem solving for emerging grand challenges. A second vein of Janet’s research seeks to identify the social and cultural impacts of technological choices made by engineers in the process of designing and creating new devices and systems. Her work considers the intentional and unintentional consequences of durable struc- tures, products, architectures, and standards in engineering education, to pinpoint areas for transformative change.Dr. Beth A. Myers, University of Colorado Boulder Beth A. Myers is the Director of Analytics, Assessment and Accreditation at the University of Colorado Boulder. She holds a BA in biochemistry, ME in engineering
, Hispanics,and females of all races) at the University of Maryland, including a summer bridge program,mentoring program, and engineering specific living learning communities. Importantimplications about program design drawn from the longitudinal evaluation of these retentionprograms will be discussed.The Successful Engineering Education and Development Support ProgramThe Successful Engineering Education and Development Support (SEEDS) Program iscomprised of several multifaceted retention programs within the A. James Clark School ofEngineering at the University of Maryland. Funded through a grant from the National ScienceFoundation (DUE #0969232), the SEEDS program was piloted in 2010 and fully implemented in2011. The goals of the SEEDS program
Paper ID #15772Summer Bridge Program Structured to Cover Most Demanding STEM Top-icsMs. Megan McSpedon, Rice University Megan McSpedon is the Associate Director of the Rice Emerging Scholars Program. She has been with the program since it was founded in 2012. Megan received a B.A. in English from Rice University.Dr. Ann Saterbak, Rice University Ann Saterbak is Professor in the Practice in the Bioengineering Department and Associate Dean for Un- dergraduate Education in the School of Engineering at Rice University. Saterbak was responsible for developing the laboratory program in Bioengineering. Saterbak introduced problem
while simultaneously struggling to formnew peer groups, and adapting to more rigorous coursework with less externally imposed structure thanprior learning experiences. These challenges, especially those related to students’ sense of belonging andconnection to other students, can be particularly pronounced for women, non-traditional students, firstgeneration students, students with high levels of financial need (such as those who are pell-eligible), andmembers of underrepresented minority groups.To address these challenges, we first developed a multi-day summer outdoors experience, designed tostrengthen relationships, build community, and increase participants’ sense of belonging in STEMdisciplines through camping, rafting, hiking, and exploring
]. Many of these skills can be gained through meaningfulincorporation of liberal arts into higher education [16]. However, current engineering educationhas not yet embraced the notion of the “cooperation among the previously separate disciplines toattack problems that have no recognizable boundaries” (p.17) [17] to enable students to quicklyadapt to the consistent shifts in directions taken by technology and engineering in the real worldwhere the globalization, the development of a knowledge economy, and rapid changes intechnology make skills of recent graduates obsolete in as little as 18 months [12, 18, 19]. Page 26.677.4However, changes in