; Engineering Liv- ing Learning Community (LLC), Educating Engineering Students Innovatively (EESI) and Peer-Assisted Study Sessions (PASS). Dr. Caldwell also serves as the activity director for the Title III program Engi- neering Learning Community. Those collective programs have nearly doubled the first-year retention of underrepresented minorities at the college.Dr. Roxanne Hughes, National High Magnetic Field Laboratory Dr. Roxanne Hughes is the Director of the Center for Integrating Research and Learning (CIRL) at the National High Magnetic Field Laboratory (MagLab). She has also directed the MagLab’s Diversity and Inclusion Programs from 2014 to 2019. She brings a breadth of experience in science teaching and infor
Paper ID #31289Work-in Progress: Identity and Transitions Laboratory: UtilizingAcceptance and Commitment Therapy framework to support engineeringstudent successProf. Jeremiah Abiade, University of Illinois at Chicago Mechanical and Industrial Engineering Laboratory for Oxide Research and EducationJoanne Moliski, University of Illinois at Chicago Mechanical and Industrial Engineering Laboratory for Oxide Research and Education American c Society for Engineering Education, 2020Work-in Progress: Identity and Transitions Laboratory: Utilizing Acceptance and Commitment Therapy
engineering, incorporating laboratory experiences into traditional coursework, and bringing awareness of electrochemical engineering to chemical engineers. Biddinger’s research involves applications of green chemistry and energy utilizing electrocatalysis, batteries, and novel solvents. c American Society for Engineering Education, 2019 Program evaluation of a high school summer bridge program in chemistry and engineeringAbstractIn this paper we evaluate a summer college preparatory program for New York City high schoolstudents housed at Bronx Community College. The program was titled “Introduction to EnergyTechnology” and it focused on teaching chemistry and engineering
(fall 2015) for students in need to refinethese skills. The interventions have spatial skills as a common topic and introduce participants tocareer applications through laboratory tours and talks. Swail et al.1 mentions that the threeelements to address in order to best support students’ persistence and achievement are cognitive,social, and institutional factors. The interventions address all elements to some extent and arepart of an NSF IUSE grant (2015-2018) to improve STEM retention.The summer 2015 orientation was attended by 17 freshmen level students in Physics,Engineering, Engineering Technology, and Computer Science. The orientation was in additionto “Bobcat Preview”, a separate mandatory one-week length freshman orientation that
Excellence in Scholarly and Creative Activities. He was awarded numerous summer faculty fellowships with the Los Alamos National Laboratory, Pacific Northwest National Laboratory, and the Air Force Institute of Technology - Wright Patterson Air Force Base. He is currently on sabbatical working at the US Environmental Protection Agency. He is a Princi- pal Investigator of the National Science Foundation-funded $1.5 Million grant to enhance freshman and sophomore engineering students’ learning experiences. His research is in the areas of fate and transport of organic and inorganic pollutants in the environment.Dr. Paulina Reina, California State University, Fullerton Dr. Paulina Reina is an Assistant Professor in the
these students live on campus. All students take two semesters ofengineering fundamentals, and also, depending upon their intended major and background,choose their math and science courses from two special honors physics courses, two honorschemistry courses, an engineering mechanics honors course, two accelerated calculus honorscourses, and a special linear algebra course. The students are not arranged into specific cohortsthat share the exact same schedule, but they do tend to see many familiar faces in each of theircourses. The visibly random grouping was conducted in some sections of the first-semesterengineering honors course.This course has two components: engineering fundamentals and hands-on laboratory exercises.In the engineering
-Sum Tests of statistical significancewere evaluated. Rank-Sum tests are a non-parametric test that does not assume a normalpopulation distribution [25]. All of the questions were on a Likert scale, and the quantitativeresponses were coded such that a more positive response was a higher value and a less positiveresponse was a lower value. Statistical analysis was conducted using the statistical softwarepackage STATA®.A Makerbot 2X was used to print all designs in 1.75mm ABS material on high quality. Althoughother material extrusion printers were not used, students had the opportunity to witness othermachines, materials, and types of 3D printing in the laboratory. While witnessing their 3D partprinting, a quick presentation on the different
For- mation (PFE: RIEF) for the project- Using Digital Badging and Design Challenge Modules to Develop Professional Identity. She is a member of the department’s ABET and Undergraduate Curriculum Com- mittee, as well as faculty advisor for several student societies. She is the instructor of several courses in the CBE curriculum including the Material and Energy Balances, junior laboratories and Capstone De- sign courses. She is associated with several professional organizations including the American Institute of Chemical Engineers (AIChE) and American Society of Chemical Engineering Education (ASEE) where she adopts and contributes to innovative pedagogical methods aimed at improving student learning and
, inquiry-based K-12 STEM curricula (ii)Aerospace Education Laboratory (AEL) (iii) Family Connection (FC) – parental/guardianinvolvement and outreach.The program team developed curriculum enhancement activities (CEAs) by adopting a well-established NASA STEM curriculum with problem-based learning at its core and integrated3D printing technology, sensor-based measurement systems, and mini Unmanned AerialVehicle (UAV) design activities to enhance authentic and experiential learning experiences.Integration of these technologies added an additional dimension to the value of scientificinquiry and shows how to apply scientific knowledge, procedures and mathematics to solvereal problems and improve the world we live in. The curriculum supported the
Standards and Technology.Dr. Peter C. Nelson, University of Illinois, Chicago Peter Nelson was appointed Dean of the University of Illinois at Chicago’s (UIC) College of Engineer- ing in July of 2008. Prior to assuming his deanship, Professor Nelson was head of the UIC Depart- ment of Computer Science. In 1991, Professor Nelson founded UIC’s Artificial Intelligence Laboratory, which specializes in applied intelligence systems projects in fields such as transportation, manufacturing, bioinformatics and e-mail spam countermeasures. Professor Nelson has published over 80 scientific peer reviewed papers and has been the principal investigator on over $30 million in research grants and con- tracts on issues of
Paper ID #13106FAST learning: Follow Accomplishments of Senior TeamsDr. Fernando Garcia Gonzalez, Florida Golf Coast University Dr. Fernando Gonzalez joined FGCU as an Assistant Professor in the Software Engineering Program in the fall of 2013. Previously he has worked at Texas A&M International University in Laredo, Texas, the U.S. Department of Energy at Los Alamos National Laboratory in Los Alamos, New Mexico and at the University of Central Florida in Orlando, Florida. Dr. Gonzalez graduated from the University of Illinois in 1997 with a Ph.D. in Electrical Engineering. He received his Master’s degree in Electrical
under-represented minority groups.Dr. Mark Tufenkjian, California State University, Los Angeles Dr. Tufenkjian is Chair of the Civil Engineering Department at Cal. State LA. His research interests include advanced geotechnical laboratory testing and in-situ testing of soft clay soils. His research has been funded by the Office of Naval Research (ONR) and the Department of Defense. He is currently the PI on a STEM grant from ONR to provide engineering students pathways to careers at Navy Labs in the southern California region.Dr. Emily L. Allen, California State University, Los Angeles Emily L. Allen, Ph.D., is Dean of the College of Engineering, Computer Science, and Technology at California State University, Los
between chemistry, physics, engi- neering, and biology preparing the trainees for careers in academe, national laboratories, and industry. In addition to research, she devotes significant time developing and implementing effective pedagogical approaches in her teaching of undergraduate courses to train engineers who are critical thinkers, problem solvers, and able to understand the societal contexts in which they are working to addressing the grand challenges of the 21st century.Dr. Jamie Gomez, University of New Mexico Jamie Gomez, Ph.D., is a Senior Lecturer III in the department of Chemical & Biological Engineering (CBE) at the University of New Mexico. She is a co- principal investigator for the following
Scholar.Dr. Brian P. Self, California Polytechnic State University Brian Self obtained his B.S. and M.S. degrees in Engineering Mechanics from Virginia Tech, and his Ph.D. in Bioengineering from the University of Utah. He worked in the Air Force Research Laboratories before teaching at the U.S. Air Force Academy for seven years. Brian has taught in the Mechanical Engineering Department at Cal Poly, San Luis Obispo since 2006. During the 2011-2012 academic year he participated in a professor exchange, teaching at the Munich University of Applied Sciences. His engineering education interests include collaborating on the Dynamics Concept Inventory, developing model-eliciting activities in mechanical engineering
faculty fellowships with the Los Alamos National Laboratory, Pacific Northwest National Laboratory, and the Air Force Institute of Technology - Wright Patterson Air Force Base. He is currently on sabbatical working at the US Environmental Protection Agency. He is a Princi- pal Investigator of the National Science Foundation-funded $1.5 Million grant to enhance freshman and sophomore engineering students’ learning experiences. His research is in the areas of fate and transport of organic and inorganic pollutants in the environment. American c Society for Engineering Education, 2021 2021 ASEE Southeastern Section Conference
Chicago’s (UIC) College of Engineering in July of 2008. Prior to assuming his deanship, Professor Nelson was head of the UIC Department of Computer Science. In 1991, Professor Nelson founded UIC’s Artificial Intelligence Laboratory, which specializes in applied intelligence systems projects in fields such as transportation, mobile health, man- ufacturing, bioinformatics and e-mail spam countermeasures. Professor Nelson has published over 80 scientific peer reviewed papers and has been the principal investigator on over $40 million in research grants and contracts on issues of importance such as computer-enhanced transportation systems, man- ufacturing, design optimization and bioinformatics. These projects have
the Cardiovascular Fluid Dynamics Laboratory. He then attended MIT where he earned his M.S. and Sc.D. while working jointly with researchers at the Shriners Burns Hospital and Massachusetts General Hospital. While at MIT, he was awarded a Shell Foundation Fellowship and was an NIH biotechnology Predoctoral Trainee. Upon completion of his doctoral studies, he joined the Stanford University Genome Technology Center, receiving an NIH Kirschstein post-doctoral fellowship. He joined Michigan State University in 2004 and his research is focused on the development of parallel analytical methods and the engineering of active nucleic acids (e.g., siRNAs) through mechanism-based design. He has been recognized for his
Education Annual Conference, Tampa, Florida, June 2019[3] E. Scott, R. Bates, R. Campbell and D. Wilson, “Contextualizing Professional Development in the Engineering Classroom”, Proceedings of the 40th IEEE Frontiers in Education Conference, Washington, DC, October 2010[4] J. Sharp, “Interview Skills Training in the Chemical Engineering Laboratory: Transporting a Pilot Project”, Proceedings of the American Society for Engineering Education Annual Conference, Pittsburgh, Pennsylvania, June 2008[5] J. Sharp, “Behavioral Interview Training in Engineering Classes”, Proceedings of the American Society for Engineering Education Annual Conference, San Antonio, Texas, June 2012[6] E. Glynn and F. Falcone, “Professional Development for
since 2015. FabLabUC is a fabrication laboratory located at the Innovation Center, PUC . Currently she is pursuing a PhD in Computer Sciences with a research focus on Engineering Education at PUC. American c Society for Engineering Education, 2020 Teaching Human-Centered Design to Engineers: Continuous Improvement in a Cornerstone CourseIntroductionThis evidence-based paper describes the continuous improvement process of a first-yearcornerstone (Project Based Learning) course which took place between 2014 and 2019 at anEngineering School. This improvement process has been based on data from the Department ofEngineering Education, and
granular materials. In 2008, he was awarded the Merck Research Laboratories Fellowship in Chemistry, Pharmaceutical Science, Material Science, and Engineering. After receiving his Ph.D., Dr. Ely conducted postdoctoral research in Duesseldorf, Germany at the Heinrich-Heine University where he extended current dissolution models to predict nano-particle dissolution kinetics. Upon returning to the States, he worked as a postdoctoral research assistant at the School of Materials Engineering at Purdue University where he spent two and one-half years modeling high performance electrochemical systems with complex microstructures including and beyond Li-ion chemistries at the atomistic, mesoscale, and continuum levels in order
year, when the course sections aretaught by non-tenure-line faculty, and when there is little discussion or development of gradingmethods, laboratory instruction, or normalization of grading across sections. (a) (b) Figure 3. Physics course grades in (a) 2018 and (b) 2019 for FYrE and Control (Non-FYrE) groups.The FCI exam provides a complementary measurement of students’ mastery that does not haveas much dependence on the specifics of the course situation (e.g., grading policy, instructor,etc.). In particular, this assessment targets students’ understanding of the basic concepts of forceand motion that are considered essential for
year or even second year ofstudy. Until recently, Binghamton University students have declared their engineering major atthe end of their second semester of study. Now, the declaration of major is done at the end of thefirst semester, although students are informed that they can still change their selection with nopenalty until the start of their second year. The fall semester of engineering courses introducestudents to the engineering majors offered at Binghamton University. There are guest lecturersfrom the engineering departments and industry. The engineering lectures, laboratories, andstudent projects represent all the engineering majors. These educational experiences are designedto give students a better understanding of the engineering
education curriculum with a focus on laboratory courses for the University of Minnesota, Twin Cities, Electrical and Computer Engineering Department. His courses leverage project-based learning, experiential learning, and self-paced activities. David has over ten years of industry experience specializing in mixed-signal RF integrated circuit design, power systems, and power electronics.Prof. Kia Bazargan, University of Minnesota, Twin Cities Prof. Kia Bazargan is an Associate Professor with the Department of Electrical and Computer Engineering at the University of Minnesota. Has has published over 70 peer-reviewed papers and book chapters related to FPGAs and VLSI computer-aided design. He received his Bachelors degree
departments are well-known to be “hands-on” departmentsas most core courses require laboratory experiences. Thus, distance learning was rarely used forengineering-related curriculum. Possible advantages from online education include the ability toaccess material and notes at the student’s own pace at any time, which in turn, may help studentsto grasp concepts more efficiently. Moreover, the information and content of courses is startingto become widely available among multiple institutions [3]. However, many challenges existrelated to the execution and delivery of online classes. The face-to-face interactions students andinstructors had become accustomed to have suddenly transitioned into minimal interactionswhere mostly the instructor is doing all
puzzles by handing pieces of paper back and forth and discussing where the strips belonged. The new solution had to replicate this process as closely as possible. • Easy to disseminate: The instructional team responsible for the course were already transitioning courses and laboratories online, along with dealing with the inherent work overhead of an online course. The solution could not require an instructor to create duplicate documents, copy and paste code for multiple teams, or other work-intensive operations. • Self-checking: In the in-person implementation, the instructional team (one faculty member and multiple undergraduate teaching assistants) would rotate around the classroom
) multiple molds of hydrogel actuators, (d) student researcher prepping prototyping materials, (e) silicone actuators in a dynamic test rig developed by students, (f) student researcher building test rig.Weekly Group Meeting In addition to technical, laboratory skills, students were provided a variety of workshopsrelated to research and their professional development. Workshops were delivered by subject-matter experts, further facilitating networking and community building. In weekly groupmeetings, students presented progress on goals, discussed current literature, practiced career-readiness skills and brainstormed independent projects.Progress reports. Each week students prepared a one slide progress
decades, each slightly different. Currently, inour largest course (~1000 students per year out of 1200-1300 total engineering freshman),Introduction to Engineering and Design (Intro 160), students participate in lectures coveringdesign topics that span multiple disciplines of engineering. In the laboratory section of thiscourse, they work in teams of 8-12 to solve a real-world, client-based engineering designproblem proposed mostly by individuals in the local community and industries. The otherintroduction to engineering courses (Intro 101 and 102) are much smaller (~100 studentscollectively), and do not have hands-on labs with client-based projects.As a result of budget constraints, the college has recently decided to end all existing college
Paper ID #12230Spatial Visualization Skills Intervention for First Year Engineering Students:Everyone’s a Winner!Dr. S. Patrick Walton, Michigan State University S. Patrick Walton received his B.ChE. from Georgia Tech, where he began his biomedical research career in the Cardiovascular Fluid Dynamics Laboratory. He then attended MIT where he earned his M.S. and Sc.D. while working jointly with researchers at the Shriners Burns Hospital and Massachusetts General Hospital. While at MIT, he was awarded a Shell Foundation Fellowship and was an NIH biotechnology Predoctoral Trainee. Upon completion of his doctoral studies, he
resources.While students felt competent in their abilities to pursue an engineering degree, they describedcompetence as individual knowledge and understanding of engineering and access to resources.These resources were described as people (e.g., advisors, tutors), and as non-human resources(e.g., libraries, relevant laboratories, tutorials). Having access to resources made them feelcompetent and confident in themselves in the present and in their future. Often studentsconflated competence with confidence, which we plan to discuss in a separate study, but ingeneral, students felt like competent learners. Therefore, they felt confident they can becomeengineers in the long run. Access to resources made sense as contributing factors to students’competence
language such as MATLAB, and a few on full-semester, client-baseddesign projects, all seek to increase retention and improve understanding of engineering conceptsat an early stage. Below, a few of many quality program are described; these were selected becausethey highlight and assess topics of interest to our program, including creativity, real-world designchallenges, and development of technical skills and self-confidence. With the intention of exhibiting that engineering is a creative process and increasinginterest in electrical and computer engineering (ECE), The University of Alabama developed adesign laboratory freshmen course for ECE students [12]. In this course, the creative process forthe students’ designs included brainstorming