A Transdisciplinary Approach for Developing Effective Communication Skills in a First Year STEM SeminarAbstractMany STEM graduates leave school academically prepared in their fields however business leaders havebeen stating that they often lack the more intangible qualities such as teamwork, critical thinking,communication skills, and the ability to manage interpersonal relations. These are often referred to as”soft skills”, yet they are tightly coupled with professional performance. Furthermore, they are allconnected to basic communication skills, commonly referred to as oral and written communication, andtheir close counterparts, listening and reading. Such skills are not only add-ons to a STEM job, they canmake the
, many STEM students see writing aslargely unrelated to their career goals. Many students assume that their “writing career is nowover”5 once they move into courses in their major. Put another way, student perceptions of anengineer’s “community of practice” often do not include writing despite the common presence ofwriting in workplace “communities of practice.” Genre offers a productive way to approach thisdisconnect. Based on the Department of Labor’s definition of workforce readiness skills6, one of themost important “soft skills” is communication. This speaks to the need to resolve the disconnectbetween the perception of writing by students in upper-level undergraduate STEM courses and theskills required by them once they graduate
views. They are less likely to trust the government, get involved, or even follow the news.Engineering and iGensWhile much has been published regarding iGens in general regarding their preparation andattitude toward college, there is very little available that isolates those students choosing to studyengineering or computer science.Industry tells us new hire engineering students lack the social and essential skills (sometimesreferred to as soft skills) to be successful [10]. Technology has become an impediment todeveloping interpersonal relationships and people skills. iGens would rather communicatethrough technology than in person, a frustration to industry managers, especially when thecommunication concerns conflict. A KRONOS Workforce
encounter in the industry, and Nabi and Bagley[12] suggested that career advisors could do more to foster students’ appreciation for theimportance of communication skills in finding a job.Several studies have looked at both engineering students’ self-efficacy and perceptions ofimportance related to communication skills, albeit separately [6,9-10,12]. Direito et al. [9] andNabi and Bagley [12] asked engineering students and recent graduates to rate their proficiencyand perceived importance related to a variety of technical and professional skills. Itani and Srour[10] asked engineering students to report their ability of certain soft skills and their perceivedimportance on these skills to determine a career choice. All three studies noted a skills
reports simply called for even more modernengineers.Figure 1: A visual depiction of new competencies needed by engineers upon review of theGrinter Report (1995) and the Vision of the Engineer of 2020 Reports (2004 and 2005).Even from an accreditation perspective, in 1997, ABET released Engineering Criteria 2000which made it clear that engineering education needed to include these global, societal,economic, and environmental mindsets in future engineers [4]. The incorporation of what arecommonly termed “soft skills” in engineering curriculum, including teamwork, communication,ethics, and social consciousness, were soon considered a necessity. Engineering coursework hadalready garnered a reputation as being content-heavy, so innovative and unique
capacity building not only in terms of technical skills but also soft skills such as effective communication and management. Indeed, in order to achieve the SDGs, higher education must do more than train a high quality workforce; it must both prepare and inspire highly skilled individuals to be innovators—and most importantly, agents of change—in their institutions and industries. But to nourish the momentum of change begun through its degree and research programs, higher education must be a catalyst for establishing a Community of Practice by stimulating cooperation among academia, business, and government, including providing opportunities for training and continuing education of the water sector and
what-if case study-based curriculum): Hypothesis 1: Participation, identification, and development of multiple engineering and non-engineering solutions will help URM and women engineering students to enhance their engineering identity. This translates to: “The PFE skill score is significantly higher in the ‘studied’ group relative to the ‘non-studied’ group.” Hypothesis 2: Exploration of social issues will help improve sensitivity of engineering students to social issues. This translates to: “The T skills survey rank is significantly higher in the ‘studied’ group relative to the ‘non-studied’ group.” Hypothesis 3: Scaffolding of the engineering students will lead to significantly improved soft skills at the time of
savior film and reviewers' reception. Symbolic Interaction, 33(3), 475-496.[21] Donaldson, W. (2017). In Praise of the “Ologies”: A Discussion of and Framework for Using Soft Skills to Sense and Influence Emergent Behaviors in Sociotechnical Systems. Systems Engineering, 20(5), 467-478.[22] Smolenski, P. (2019). Proof by Verbosity. Bad Arguments: 100 of the Most Important Fallacies in Western Philosophy, 289-292.[23] Kaplan, R. M. & Saccuzo, D. P. (1997). Psychological testing: Principles, applications and issues. Pacific Grove: Brooks Cole Pub. Company.[24] Slaton, A. E., & Pawley, A. L. (2018). The Power and Politics of Engineering Education Research Design: Saving the ‘Small N’. Engineering Studies, 10(2-3
experts atchallenging students to develop excellent listening skills, cultural sensitivity, ethics, andempathy13,14. While engineering programs require students to take courses in the arts,humanities, and social sciences, students often compartmentalize these human-centric skills as“liberal arts” skills instead of weaving them into their technical expertise. There are numerousexamples of engineering programs or courses that have incorporated arts and humanities intodesign courses to encourage students to practice integrating human-centric skills with theirtechnical knowledge.15-17 A major challenge faced by this approach is that these courses are oftenseen as design courses and the “soft skills” offered by the arts and humanities faculty are just
best suit the individual projects.Working with and alongside each other, the students gain both hard and soft skills and have theopportunity to pursue interests outside of the classroom. The project encourages undergraduateparticipation to maximize facilities use for both personal and academic projects, and also buildsand amplifies the maker community.The general undergraduate population is the third tier that benefits from the completed projects.The campus-wide value of each project is demonstrated through capstone events to showcaseeach finished project. These large-scale, high-visibility capstone events are designed to inspireundergraduates to become involved in future projects and discover the potential of the makercommunity.Each project
“soft” skills, and the high social status resulting from the challenging and expensive trainingrequired for the position – may be related to the moral superiority associated with historicalpresentism. Presentism is a tendency to view now as the most progressive, advanced momentrelative to a primitive, morally technologically inferior past, and to judge those in the past bycontemporary standards, and to neglect consideration of history (e.g. [42]). Some scholars havefound political motives in presentism (e.g. as “implicit Cold Warriors who saw history, in part, asa vehicle in the fight against radicalism at home and abroad” in [43]).The rigidity of engineering education may also contribute to a pattern of systemic exclusion.Forbes, et al., [44
critical reflections in engineering education effective in assessinglearning outcomes? During this investigation, two additional topics of relevance emerged: c)Factors that contribute to successful implementation of reflection and d) The recognition of theneed for further research on reflection.a) Critical Reflections and Achieving Learning OutcomesThe literature reviewed indicated that educators sought diverse learning outcomes through use ofreflection, with many focusing on the development of skills beyond strict technical abilities, suchas teamwork [9][10]. It is interesting to note, however, that reflection upon these “soft” skills ormore consistent reflection over the duration of the project was, in some cases, associated withresults linked
private profit-oriented organizations and on industrial,commercial, and military problems.” (Riley, p. 40), (5) Narrow Technical Focus/Lack of Otherskills, and (6) Uncritical Acceptance of Authority. These mindsets characterize part of thebroader culture of engineering and manifest themselves in the ways that engineering work isorganized: from the reduction of a complex project into a set of smaller components, valuingaccountability of work and success on project components, often hierarchical organization inteams, valuing technical skills over “soft” skills such as collaboration and communication, andthe devaluing of engineering work focused on social welfare
courses in Sustainability, Humanitiesand Social Sciences, Ethics, as well as soft skills such as writing, communication and teamwork.7,8,9 Strategies for pedagogical reforms included cornerstone and capstone courses, projectand problem-based learning, active participatory learning opportunities, instructionallaboratories, learning a second language, and foreign country internships.10,11,12,13Nevertheless, most engineering education programs continue to emphasize the technical aspects,while the social and environmental aspects remain externalized.14 Barbara Olds15 notes that “theeducation of science and engineering students has for too long been merely “technical”, oftenneglecting human complexity in order to achieve quantifiable correctness