, launched in 2017. The program, Sustainable EngineeringManagement for International Development (SEM4ID), has enrolled between 8 and 13 studentseach year from both engineering and non-engineering backgrounds, and provides a mix ofclasses in technical engineering and liberal education topics. While the different disciplines worktogether, there are separate learning outcomes for the engineers and non-engineers. Theengineering strand of the program is accredited by the UK Engineering Council.Students engage in experiential, problem-based learning (PBL) through international servicelearning (ISL) projects in Sierra Leone or Zambia, where they are connected to previouslyestablished community-based contacts. Throughout the year-long program, students
2015, she shared her instructional materials, including a scoring system eval- uated for reliability, with over 400 schools from the U.S., Australia, Germany, and South Korea. Dr. Norback has studied communication and other basic skills in the workplace and developed curriculum over the past 30 years—first at Educational Testing Service; then as part of the Center for Skills Enhance- ment, Inc., which she founded, with clients including the U.S. Department of Labor, the National Skill Standards Board, and universities. Since arriving at Georgia Tech in 2000 her work has focused on oral communication for engineering students and engineers. Dr. Norback has published over 20 articles in the past decade alone, in the
Fellow, and an MIT Chemical Engineering Communication Lab Fellow.Mr. Alex Jordan Hanson, University of Texas at AustinJennifer M. SchallDr. Jesse N Dunietz, Massachussetts Institute of Technology Jesse Dunietz is an educational designer for the MIT Communication Lab, an artificial intelligence re- searcher, and a freelance science writer. He develops training materials for the engineering graduate students who join the Communication Lab to serve as communication coaches for their peers. He holds a bachelor’s in computer science from MIT and a Ph.D. in computer science from Carnegie Mellon Uni- versity.Amanda X Chen, Massachusetts Institute of Technology, Biological EngineeringRohan Chitnis, Massachusetts Institute of
will better equip future socialand political leaders to balance scientific and technological impacts on societal institutions andmake well-reasoned decisions. Further, this course acknowledges that no single discipline cansolve society’s most complex problems. Through coursework pedagogy and topics covered, thiscourse encourages society’s problem solvers to value the importance of multidisciplinary teamsand equips them with the tools to collaborate and communicate effectively across disciplines.The development of this course addresses the critical gap in engineering education concerningthe role and potential of engineering in creating a sustainable world. After the course is piloted,an analysis of the course design and the curriculum will be
engineering students with an outreach mission to high school students. Her area of expertise is turbine cooling and using additive manufacturing to develop innovative cooling technologies. She has published over 220 archival papers and advised 70 dissertations and theses. Dr. Thole has provided service leadership to numerous organizations including being a member of ASME’s Board of Governors. She has also served as the Chair of the Board of Directors for the ASME’s International Gas Turbine Institute in which she led a number of initiatives to promote communities of women engineers and students. In her roles as an educator, researcher, and mentor, Dr. Thole has received numerous awards. The most notable awards include
and productive effects for engineering students. The dose model wedescribe in this paper has developed in light of certain very real challenges and needs. However,we also consider it worthwhile to confront the challenges involved in engaging engineeringstudents with ethical curricula. Drawing on and extending the medical metaphor here to considerside effects helps us outline critiques of the way engineering educators approach dosing studentswith ethics. Table 2: Advantages and Challenges Associated with Dosing Students with Ethics Dose Type Advantage in Engineering Ethics Challenges in Engineering Ethics Micro Integrate with other coursework; take up Requires modifying course planning; little
earn a Master of Science in Engineering in Environmental and Water Resources Engineering and a Ph.D. in Civil Engineering from The University of Texas at Austin, while working with the Austin chapter of Engineers Without Borders as a volunteer and project lead for a project in Peru. She has published and presented on incentivizing decentralized sanitation and wastewater treatment, on sustainability of coastal community water and sanitation service options, as well as on integrating liberal arts and STEM education, currently through the vehicle of the Grand Challenges Scholars Program. She has co-designed workshops oriented toward educational change for Olin’s Summer Institute and the joint Olin College-Emerson
International Studies, Anthropology and Latin American Studies from Macalester College.Dr. Greg Rulifson P.E., Colorado School of Mines Greg is currently a AAAS Fellow at USAID. Greg earned his bachelor’s degree in Civil Engineering with a minor in Global Poverty and Practice from UC Berkeley where he acquired a passion for using engineering to facilitate developing communities’ capacity for success. He earned his master’s degree in Structural Engineering and Risk Analysis from Stanford University. His PhD work at CU Boulder focused on how student’s connections of social responsibility and engineering change throughout college as well as how engineering service is valued in employment and supported in the workplace.Courtney
by required coursework in both engineering and thetraditional liberal arts, this core course sequence in Engineering Studies gives students aninterdisciplinary mindset and identity as “sociotechnical engineers.”In this paper, we describe the development, evolution, and assessment of our core three-coursesequence in Engineering Studies. Degree programs like Lafayette’s AB in Engineering Studiesprovide a mechanism for achieving the interdisciplinary, sociotechnical goals articulated by theNAE [1] and others, and for broadening participation in engineering education [2-3, e.g.]. As inour previous paper on the history of this program [4], we will consider both the transferability ofour approach to other institutional contexts and its
through a worksheet. This personality assessment connects individualinterests to related occupations, provides a vocabulary for students to discuss their careerinterests, and suggests relevant occupations based on the individual’s “type” [36]. Educationalopportunities beyond their current program were discussed, including education that can proceedafter their biosystems engineering degree, such as prosthetist training, medical school, orgraduate study in engineering [37]. Through this career development support, we explored theinterdisciplinary nature of biosystems engineering and the broad options for graduates of theprogram both within and beyond engineering, building on the course content covered by theprofessors of the course, and supporting