solving—efforts Page 26.616.4likely requiring cooperation and collaboration among diverse, international experts.primarily as one of having too few US students entering STEM higher education, the solution issimply a matter of making STEM attractive enough to interest students early on and keep themsufficiently engaged to apply to and enter STEM higher education programs: The hook is therebybaited.Interrelated with efforts intended to recruit more students (in aggregate) to STEM highereducation are concerns specifically over the lack of women and underrepresented minorities inSTEM fields. In both education policy and STEM
grassroots. As engineering education scholarship develops its transnational agenda, I alsooffer this research design, my findings, and pedagogical efforts as points of entry for scholarsand educators to reconfigure the relationship between teachers, learners, and the contexts inwhich their interactions are situated.Background: Engineering to help (ETH) trendsTrends in the internationalization of service learning in engineering education suggest aburgeoning interest among students, universities and professional organizations in tackling issuesof social and economic development.4,5,6,7,8 Diverse campus-based and professional programshaving labels including humanitarian engineering, service learning, sustainable development,social entrepreneurship are
experiences.Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication
in the context ofcomputer programming was both related to and distinct from this notion of the functions of aproduct.)At some point, someone signed “so, it’s what the thing tells you about itself?” and there was anelectric moment in the room. “Yes, that! It’s what the thing tells you about — how you can useit, what it’s for…” And so, with several grammatical and production tweaks, our signedprototypes for affordance theory was born.The signs for “affordance” and “to afford” reveal (or rather, afford) exploring aspects ofaffordance theory that may be less obvious in English. For instance, when these signs wereshown to a hearing non-signer who uses affordance theory in their research, they began to usethe signs as tools with which to think
their bachelor’s degreesin Engineering Physics; are either research assistants or research assistant professors of Physics;are members of the Physics Education Research group; and are engaged in a broad range ofeducational research, mostly at “the intersection of ethnic studies, critical pedagogies, and STEMteaching and learning” (author’s biographical sketch) with a focus on engineering design andequitable change in STEM programs.The diversity of the authors’ expertise and interests was reflected in the qualities that theselection committee for LEES best paper focused in in explaining its choice of this paper. “Theexamination of student engagement with ethics and ethical reasoning builds on past work on themismatch between engineering-science
encounters with the Other. (This is most obvious in her latest new course, A Global State of Mind.) Whatever the subject, her courses are grounded in accountability–to the text, to oneself, and to one’s fellows.Ms. Robyn Sandekian, University of Colorado, Boulder Robyn Sandekian is the Managing Director of the Mortenson Center in Engineering for Developing Com- munities (MCEDC) at the University of Colorado Boulder (CU Boulder). She joined the Engineering for Developing Communities Program (now known as the Mortenson Center) in spring 2004, just as the first EDC graduate track was approved. With MCEDC, her main duties have included student advising and academic program development. Recently, she co-developed the
, Salt LakeCity, Utah. Jun. 2018.[3] Yoritomo, J. Y., Turnipseed, N., Cooper, S. L., Elliott, C. M., Gallagher, J. R., Popovics, J.S., Prior, P., and Zilles, J. L. “Examining engineering writing instruction at a large researchuniversity through the lens of writing studies,” in Proceedings of the 2018 ASEE AnnualConference, Salt Lake City, Utah. Jun. 2018.[4] Hanson, A. J., Lindahl, P., Strasser, S. D., Takemura, A. F., Englund, D. R., and Goldstein, J.“Technical communication instruction for graduate students: The Communication Lab vs. acourse,” in Proceedings of the 2017 ASEE Annual Conference, Columbus, Ohio. Jun. 2017.[5] R. Day Babcock and T. Thonus, “A sample research question: What is a successful tutorial?”in Researching the Writing
primary research question addressed in this study is: How do team dynamics in activelearning environments affect a woman's confidence as an engineer? To supplement this research,secondary questions include: ● How do students define active learning, and with what connotations? ● What types of roles do men and women take on in group projects? ● How do men and women evaluate each other on a team?We used quantitative and qualitative peer evaluation data, as well as qualitative data fromstudent focus groups to explore the research questions. Each of the methods of data collectionand analysis are discussed below. Surveys, focus groups, and interviews for students wereconducted under the University of Colorado Boulder’s Institutional Review
-Main Campus, West Lafayette (College of Engineering) Julianna Ge is a Ph.D. student in the School of Engineering Education at Purdue University. At Purdue, she created and taught a novel course for undergraduate engineering students to explore the intersec- tions of thriving, leadership, diversity and inclusion. As an NSF Graduate Research Fellow, her research interests intersect the fields of engineering education, positive psychology, and human development to understand diversity, inclusion, and success for undergraduate engineering students. Prior to Purdue, she received dual bachelor’s degrees in Industrial Engineering and Human Development and Family Stud- ies from the University of Illinois at Urbana-Champaign
on managing personal bias in STEM, both online and in-person. Dr. Cross’ scholarship investigated student teams in engineering, faculty communities of practice, and the intersectionality of multiple identity dimensions. Her research interests include diversity and inclusion in STEM, intersectionality, teamwork and communication skills, assessment, and identity construction. Her teaching philosophy focuses on student centered approaches such as problem-based learning and culturally relevant pedagogy. Dr. Cross’ complimentary professional activities promote inclusive excellence through collaboration. c American Society for Engineering Education, 2018 Work in Progress: Understanding Student
, and learning as socio- culturally organized phenomena. A major strand of his research explores the varied trajectories taken by students as they attempt to enter professional disciplines such as engineering, and focuses on the dilem- mas encountered by students as they move through these institutionalized trajectories. He is co-editor of a 2010 National Society for the Study of Education Yearbook, Learning Research as a Human Science. Other work has appeared in Linguistics and Education; Mind, Culture, and Activity; Anthropology & Education Quarterly, the Encyclopedia of Cognitive Science; the Journal of Engineering Education; and the Cambridge Handbook of Engineering Education Research. His teaching interests
with the WFU Program for Leadership and Character and many colleagues across the university. With inclusion being a core value, she is proud that the WFU Engineering team represents 60% female engineering faculty and 40% female students, plus 20% of students from ethnic minority groups. Her areas of expertise include engineering identity, complex problem solving across cognitive and non-cognitive domains, recruitment and retention, PBL, engineering design, learning through ser- vice, character education in engineering contexts, etc. She also conducts research in cardiovascular fluid mechanics and sustainable energy technologies. Prior to joining Wake Forest University, Olga served as a Program Director at the
, we designed the course to enable learners to learntechnical engineering skills and provide access to higher education by awarding academic creditsat the end of the program. We used a combination of remote and local staff as facilitators inaddition to technology tools for online and active learning. The overall structure of our course isset up as an active, blended, collaborative, and democratic learning space. In light of the unique educational context, we describe in this paper our course designprocess, and then we explore student artifacts, interviews, observations, and surveys to answerour three objectives. In doing so, we believe this research and application example can contributeto the literature by understanding an implemented
week for 7 weeks, students convened in a makerspace todesign and build individual projects using various power tools. The post-workshop surveysindicated that 26 of the 40 students were “very likely” to try soldering again on their own and 33out of 40 students “strongly agreed” with the statement “I believe the build group helped toincrease my tool knowledge, basic making skills, and confidence to participate in the design andbuilding portion of team based engineering projects” [9].The Carpentries is a nonprofit organization that teaches data science skills to researchers. Theirpaper for the 2018 ASEE Annual Conference reports that short (1-2 hour) workshops are anefficient way to help people who have little to no prior experience explore
disciplinarities ofher own research and teaching. Her graduate training is in STS, and her research has analyzedinter- and transdisciplinary collaborations between engineers, artists, and scientists [19]. She ismotivated by the potential for interdisciplinary engagement to change engineers’ outlooks ontheir education and profession. Her experiences as an instructor of STS-based core courses forengineering and computer science students have helped to shape her outlook on teaching and herapproach to this paper.Lastly, Dr. Desen Ozkan’s graduate background is in engineering education, specifically inunderstanding how faculty developed and maintained interdisciplinarity amid universitystructures. She focused on interdisciplinary design courses that used human
] analyzed the “low-choice culture” of engineering curricula, particularly incontrast to other fields of study. In the context of new research demonstrating the value of selfdetermination or autonomy for students in motivating learning, enhancing self-efficacy, andsupporting persistence, the relative inflexibility of engineering curricula stood out starkly. Withinindividual courses, studies have shown the “power of choice” to positively influence studentoutcomes, for example, when students may choose from among a menu of design projects[45, 46], and recommendations have been made for the design of self-determination supportiveengineering-student learning experiences [47, 48]. However, Forbes, et al.,’s statistical analysis ofthe curricula at 46