six individual skillmodules covering skills such as dependability, responsibility, independence, persistence,integrity, and ethics. The main goal is to create multiple opportunities to teach and reinforcesoft skills within the regular technical curriculum in the high schools. This paper discussesthe integration of the soft skills modules into the technical curriculum developed viaexamples, and outlines its potential uses in this engineering department’s curriculumincluding its manufacturing engineering program. The paper concludes with a discussion ofthe implementation of this project and provides some preliminary feedback from theparticipating high schools and reflections of the authors. It also includes future workopportunities such as
. Georgeou, “Geometric dimensioning and tolerancing (GD&T) integration throughout a manufacturing engineering curriculum,” Proceedings, ASEE conference, 2016.[5] D.M. Yip-Hoi, D. Gill, “Use of Model-Based Definition to Support Learning of GD&T in a Manufacturing Engineering Curriculum,” Proceedings, ASEE conference, 2017.[6] Rios O., “An Example of Teaching Geometric Dimensioning and Tolerancing (GD&T) Concepts using 3D Printed Parts,” Proceedings, ASEE Gulf-Southwest Section Annual Conference, 2018.[7] J. Fuehne, “Metrology education including GD&T in engineering technology,” Proceedings, ASEE conference, 2022.[8] K.P. Hewerdine, J.M. Leake, and W.B. Hall, “Linking CAD and metrology to
is executed, data is collected, stored, and graphed onto an integrated computer system. The computer automatically pulls relevant information from the resulting stress vs strain curve. The young’s modulus in N/mm² was recorded for each test. Fig 7. Dogbone specimen set up in the Universal Testing system for a tensile strength test. Compressive testing uses the Universal Testing System, but applies a force inwardinstead of an outward force. The specimen is
manufacturing engineering in HVAC and Steel Mill. Trisha is currently a Lecturer in the Engineering Studies at Rochester Institute of Technology. She is currently pursuing a Master’s in Manufacturing and Mechanical System Integration at RIT.Mark Davis, Rochester Institute of TechnologyDr. Yunbo Zhang, Rochester Institute of Technology Dr. Yunbo Zhang is currently an Assistant Professor in Department of Industrial & Systems Engineering at Rochester Institute of Technology (RIT). Dr. Zhangˆa C™s research focuses on investigating computational methods for advancing design and manufacturingDr. Rui Liu, Rochester Institute of Technology Dr. Rui Liu is currently an Assistant Professor in the Mechanical Engineering Department at
an MS and Ph.D. in Mechanical Engineering from the University of MissouriRolla. Dr. Ertekin has also been a Certified Manufactur- ing Engineer (CMfgE), awarded by the Society of Manufacturing Engineers (SME) since 2001, and a Certified Quality Engineer (CQE) awarded by the American Society for Quality (ASQ) since 2004. In addition to positions in the automotive industry, Dr. Ertekin has held faculty positions at Western Ken- tucky University and Trine University. In 2010, he joined Drexel University’s College of Engineering as an associate clinical professor. He has been instrumental in course development and the assessment and improvement of the Engineering Technology (ET) curriculum, including integrated
includes [6] report on teaching shipbuilding courses usingMS-Project, MS-Access, and FORAN, and. The MarineTech project which taught high schoolstudents with Project Based Learning [7]. Others, reported on the use of distance learning duringthe COVID-19 pandemic with games for an undergraduate marine engineering curriculum [8].In an ASEE Peer paper, Verma and Hughes [9] discuss the teaching of Lean Manufacturing atthe Apprentice School at Northrop Grumman, Newport News. Other publications involve theNational Shipbuilding Research Program such as the September 1992 report on the“Shipbuilder’s Classroom of the Future” in which outputs of PC graphics and text, videodisc,audio tape and linear programs are used to meet the needs of the trainee from an
Paper ID #39566Implementation of Actionable Gamification Design Framework in Machin-ingTrainingKrzysztof Kamil Jarosz, Rochester Institute of Technology Graduate Research Assistant at RIT SMRGTrisha Gard-Thompson, Rochester Institute of Technology (COE)Chao Peng, Rochester Institute of Technology Dr. Chao Peng is an Associate Professor of the School of Interactive Games and Media in the Golisano College of Computing and Information Sciences at Rochester Institute of Technology. His research areas include but are not limited to virtual reality, gamification, high-performance graphics, and 3D interaction.Dr. Rui Liu, Rochester
the drone body and aprocedure for embedding the electric wiring was developed. This integration required severaldesign modifications, which were implemented and prototyped. We believe that this modulardrone development project design and mentorship guided by the principles of experientiallearning and empowered by AM has increased the efficacy of students and helped them developseveral skills that are valuable to the future engineering work force including team skills,leadership, time-management, life-long and interdisciplinary learning, and entrepreneurshipmindset. Through a survey and focus group approach, the findings of an independent evaluatorconfirm those benefits to the students participating in the project.1. IntroductionAdditive
Robotics with Internet-of-Things for Student Learning on Industrial Robotics and Automation in Manufacturing AbstractThis paper explores the experience of implementing virtual reality (VR) laboratory activities withInternet-of-Things (IoT) for students to learn industrial robotics and automation in manufacturing.This work provides an innovative solution for optimizing learning effectiveness and improvingeducational outcomes through the development of VR models that can be used and integrated intothe existing robotics laboratory. We explore methods of using ABB RobotStudio to allow studentsto program traditional industrial robots using the project-based learning approach. Key features ofhow
Expectations Based on the SME Four Pillars of ManufacturingKnowledge. In 2013 ASEE Annual Conference & Exposition (pp. 23-1120).[9] Nutter, P., & Jack, H. (2013, June). An application of the SME four pillars ofmanufacturing knowledge. In 2013 ASEE Annual Conference & Exposition (pp. 23-149).[10] Mott, R. L., & Jack, H. (2013, June). The Four Pillars of Manufacturing KnowledgeModel–Illustrations of Mapping Curricula into the Model. In 2013 ASEE AnnualConference & Exposition (pp. 23-1202).[11] Mott, R, Bennett, R, Gartenlaub, M, Danielson, S, Stratton, M, Jack, H, Kraebber, H,& Waldrop, P. "Integration of Manufacturing into Mechanical Engineering Curricula."Proceedings of the ASME 2013 International Mechanical Engineering
National Science Foundations Advanced Technological Education (NSF-ATE) as a Regional Center of Excellence. FLATE’s mission is to support manufacturing education in K-14 programs through outreach, professional development, curriculum reform and technician research. She earned a Ph.D. in Civil En- gineering/Environmental from the University of South Florida and served on the Engineering faculty at Hofstra University and the FSU-FAMU College of Engineering. Dr. Barger has authored over 50 papers for presentations on engineering and technology education, serves on several national advisory boards for CTE and workforce education initiatives, and is a Fellow of the American Society of Engineering Edu- cation (ASEE) and the