to understand the existing technology, where the results are examinedto determine the impact and utility of the tool in design and as part of engineering designcurricula. A second experiment is also conducted with graduate students from The University ofTexas (UT) at Austin to further analyze the effectiveness of the tool on quantity and quality ofthe concepts generated. These experiments aim to demonstrate that state-of-technology designtools provide an effective foundation and platform for designers to generate a larger quantity ofconcepts, with higher quality and novelty. There exist significant implications on engineeringdesign education from this process. For example, the systematic mapping of the state-of-the-artin a field is an
AC 2007-1020: 3-PHASE MULTI SUBJECT PROJECT BASED LEARNING AS ADIDACTICAL METHOD IN AUTOMOTIVE ENGINEERING STUDIESEmilia Bratschitsch, Joanneum University of Applied Sciences, Department of AutomotiveEngineering, Graz, Austria Emilia Bratschitsch is head of the Department of Vehicle Technologies (Automotive and Railway Engineering) and teaches Electrics, Electronics and Methods of Signal Processing at the University of Applied Sciences Joanneum in Graz (Austria). She is also a visiting lecturer at the Faculty of Transport of the Technical University of Sofia (Bulgaria). She graduated with a degree in Medical Electronics as well in Technical Journalism from the TU of Sofia and received her PhD
present vastly different properties from thoseof bulk materials. While nanotechnology has great potential for beneficial environmental uses,the explosion of nanotechnology-enhanced products raises concerns regarding the adverse effectsof nanoparticles on human health and the environment.The current engineering curriculum at the University of Missouri (MU), like the major of the 300accredited engineering colleges in the U.S., lacks a sustainability component. The AccreditationBoard for Engineering and Technology (ABET) 2000 criteria, however, requires that allengineering students develop an understanding of the impact of engineering solutions in asustainable global context, as well as have “an ability to use the techniques, skills, and
AC 2011-1000: ENERGY HARVESTING FOR ENGINEERING EDUCA-TORSEric C Dierks, The University of Texas at Austin Mr. Dierks is currently a Master’s student at The University of Texas at Austin working on powering structural health monitoring systems through energy harvesting and scavenging. He also earned a BSME from the same university in 2008. Following this he worked for the Institute for Advanced Technology in Austin modeling, simulating, optimizing, and testing battery-inductor pulsed power supplies for electro- magnetic rail guns for the US Army and Navy. There, he also briefly served as a reviewer for Carnegie Mellon’s autonomous platform demonstrator robotic program.Jason M Weaver, The University of Texas at
interests in- clude innovative teaching and learning strategies, use of emerging technologies, and mobile teaching and learning strategies.Dr. Donald Plumlee P.E., Boise State University Dr. Plumlee is certified as a Professional Engineer in the state of Idaho. He has spent the last ten years es- tablishing the Ceramic MEMS laboratory at Boise State University. Dr. Plumlee is involved in numerous projects developing micro-electro-mechanical devices in LTCC including an Ion Mobility Spectrometer and microfluidic/chemical micro-propulsion devices funded by NASA. Prior to arriving at Boise State University, Dr. Plumlee worked for Lockheed Martin Astronautics as a Mechanical Designer on struc- tural airframe components
is tied to the ABET accreditation process.1. IntroductionDespite widespread acknowledgment that effective written communication is as essential forlearning as for disseminating ideas and discoveries, teaching writing and improving the qualityof student writing remain challenges for educators in engineering. National studies, such as thoseconducted by the Commission on Writing1 and the Boyer Commission on EducatingUndergraduates in the Research University2, argue that writing is a central means for developingstudents’ critical thinking, communication, and metacognitive skills. These studies urge reforms,suggesting that educators pay greater attention to writing instruction in all disciplines and urgingscience, technology, engineering, and
solved by merely adopting a carbon fee. Toassist the students in understanding the magnitude and scope of the issue, the Kaya IdentityEquation is developed. Although the equation is a readily know “I-PAT” equation, humanimpact (I) on the environment equals the product of Population, Affluence, and Technology(PAT), where the impact is carbon dioxide in the atmosphere, the equation is potentially a new,yet easy to interpret concept for the engineering students.4 Asking where the anthropogeniccarbon dioxide comes from in the form of a series of leading questions can generally form theKaya Identity Equation as represented below.5 $!"# !"#$%&
., Professor, Mechanical Engineering Dept., Ohio University, Athens, Ohio, http://www.ent.ohiou.edu/~bayless/.14. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/fluid, National Institute of Standards and Technology, Boulder, Colorado, accessed 2008. Page 15.498.1415. Bhattacharjee, S., TEST (The Expert System for Thermodynamics), http://www.thermofluids.net, San Diego University, California, accessed 2009.
Paper ID #6559Microcontrollers for Mechanical Engineers: From Assembly Language toController ImplementationMr. Noah Salzman, Purdue University, West Lafayette Noah Salzman is a graduate student in engineering education at Purdue University. He received his B.S. in engineering from Swarthmore College, his M.Ed. in secondary science education from University of Massachusetts, Amherst, and his M.S. in Mechanical Engineering from Purdue University. He has worked as an engineer and has taught science, technology, engineering, and mathematics at the high school level. His research focuses on the intersection of pre-college and
AC 2010-361: A CASE STUDY OF A THERMODYNAMICS COURSE:INFORMING ONLINE COURSE DESIGNSimin Hall, College of Engineering at Virginia Tech Dr. Simin Hall is a Research Assistant Professor in the Department of Mechanical Engineering at Virginia Tech and Polytechnic Institute. Her applied research in education is focused on cognitive processes and motivational factors in problem solving in computationally intensive courses such as engineering using online technology. Prior to joining ME at Virginia Tech, she completed a collaborative research project between the Department of Engineering Education at Virginia Tech, College of Engineering at Texas A&M, and Department of Sociology at University
the study of fluid mechanics while using the state-of-the-art flow visualization and measurement technique PIV in a low-cost and safe manner.Continuation of this work includes the on-going development and refinement of flowexperiments and leveled curricula to extend across a variety fluid mechanics topics. Iterativeimplementation of the mI-PIV and curricula with students in a variety of learning environmentsprovides the research team with educational data needed to refine the application user interface,processing algorithm, and learning content. Acknowledgements This material is based upon work supported by the U.S. Office of Naval Research Navyand Marine Corps Science, Technology, Engineering &
Paper ID #21881An Initial Exploration of Engineering Students’ Emotive Responses to Spa-tial and Engineering Statics ProblemsDr. Idalis Villanueva, Utah State University Dr. Villanueva is an Assistant Professor in the Engineering Education Department and an Adjunct Pro- fessor in the Bioengineering Department in Utah State University. Her multiple roles as an engineer, engineering educator, engineering educational researcher, and professional development mentor for un- derrepresented populations has aided her in the design and integration of educational and physiological technologies to research ’best practices’ for student
in mechanical engineering from the University of Washington, Seattle, in 2002 and 2006. During graduate and post-doctoral work at the University of Washington, Dr. Perry was involved in the development of a 7 degree-of-freedom (dof) arm exoskeleton, a 5-dof high precision po- sitioning robot, a 5-dof surgical simulator, a novel 2-dof surgical grasper, and a 1-dof powered prosthesis for early-stance gait improvements in trans-tibial amputees. Following post-doctoral work at the Univer- sity of Washington Biorobotics Lab, he spent 6 years in the Department of Rehabilitation Technologies at Tecnalia Research & Innovation in San Sebastian, Spain, where he managed R&D activities for the development of low-cost
analyzing and thereby assessing howdifferent methods used in a flipped classroom setting will impact student-learning effectiveness.The study compares flipped classroom instruction to a traditional teaching method which is usedas a reference for control study. Data gathered for the analysis is based on a non-biaseduniformly distributed lab setting focused on using smart materials to determine the vibrationfrequency of a cantilever beam. The lab setup is a part of a Green Energy Materials &Engineering course offered in the summer 2014 semester. This class introduced students to theconcepts of Green Manufacturing, Green Technologies in industries, and Fabricating advancedGreen Energy devices. The framework used for gathering unbiased data
Paper ID #16991Video-Based Concept Tutors with Assessment in Game Format for Engineer-ing CoursesEliza A. Banu, Auburn University Dr. Eliza Banu has a Bachelors degree in Electrical Engineering from Polytechnic University of Bucharest and completed her Ph.D. program in Mechanical Engineering at Auburn University in 2014. Dr. Banu’s research interests are in the dynamics of impact of rigid bodies and human with granular matter as well as developing innovative instructional materials. She has been working with LITEE (Laboratory for Innovative Technology and Engineering Education) at Auburn University since 2010.Dr. P.K
Paper ID #12434Revising Mechanical Engineering Laboratories for Improved Student Out-comesDr. Andr´e J. Butler, Mercer University Dr. Butler is an Associate Professor and Chair of the Environmental Engineering Department at Mercer University. His research interests include air pollution and public health.Dr. William Moses, Mercer University William Moses is an associate professor and former chair of the Mechanical Engineering Department at Mercer University. He earned a B.M.E. and M.S.M.E. in mechanical engineering from the Georgia Institute of Technology, and a Ph.D. from North Carolina State University. Research
analyzed to determine ifthey behaved like experts or novices. The data consisted of paper-and-pencil solutions and video-recordings of engineering freshmen and sophomores who were asked to think aloud as theysolved typical statics problems. Data from U.S. students suggested that freshman-sophomoreundergraduate students did not use forward inferencing. In contrast to the U.S. data, students atan Indian Institute of Technology clearly used forward inferencing and showed that beginningundergraduate students can achieve the deep problem solving insight characteristic of experts.The U.S. and Indian data include quantitative and qualitative evidence. The distributions offorward versus backward inferencing are reported. Curriculum and cross-cultural
AC 2011-1159: COMPREHENSIVE COURSE REDESIGN: INTRODUC-TION TO THE MECHANICS OF MATERIALSJefferey E. Froyd, Texas A&M University Jeff Froyd is the Director of Faculty Climate and Development in the Office of the Dean of Faculties and Associate Provost at Texas A&M University. He served as Project Director for the Foundation Coalition, an NSF Engineering Education Coalition in which six institutions systematically renewed, assessed, and institutionalized their undergraduate engineering curricula, and extensively shared their results with the engineering education community. He co-created the Integrated, First-Year Curriculum in Science, Engi- neering and Mathematics at Rose-Hulman Institute of Technology
Paper ID #15915E-Assessment and Direct Competency Modelling in a Chemistry for Mechan-ical Engineering CourseDr. Rebecca Jo Pinkelman, Technische Universit¨at Darmstadt Rebecca J. Pinkelman graduated from Chadron State College with a B.S. in Chemistry and Biology in 2008. She received her M.S. and Ph.D. in Chemical Engineering from South Dakota School of Mines and Technology in 2010 and 2014, respectively. She is currently a post-doctoral research scientist in the Mechanical and Process Engineering Department at the Technische Universit¨at Darmstadt. ¨ Technische Universit¨at DarmstadtIng. Frank Guido Kuhl
made the switch from Instruc- tional Laboratory Supervisor to Post-Doctoral Research Associate on an engineering education project. His research area has been engineering education, specifically around the development and assessment of technologies to bring fluid mechanics and heat transfer laboratory experiences into the classroom.Prof. Robert F. Richards, Washington State University Dr. Robert Richards received the PhD in Engineering from the University of California, Irvine. He then worked in the Building and Fire Research Laboratory at NIST as a Post-Doctoral Researcher before joining the faculty of the School of Mechanical and Materials Engineering at Washington State University. His research is in
collaborations." Journal of Engineering Education 94.1 (2005): 13-25. 2. Criteria for Accrediting Engineering Programs, Accreditation Board for Engineering and Technology (2015): 5. 3. Mazurek, David Francis. "Consideration of FE exam for program assessment." Journal of Professional Issues in Engineering Education and Practice 121.4 (1995): 247-249. 4. Leydens, Jon A., Barbara M. Moskal, and Michael J. Pavelich. "Qualitative methods used in the assessment of engineering education." Journal of Engineering Education- Washington 93.1 (2004): 65-72. 5. Nirmalakhandan, N., D. Daniel, and K. White. "Use of Subject‐specific FE Exam Results in Outcomes Assessment." Journal of
based on the need of the program constituencies. The current PEOs for the MEprogram at UTSA states that the within a few years after graduation, the graduates will: (1) haveengineering careers in industry, government, and/or will pursue advanced graduate orprofessional degrees, (2) apply their engineering skills to their careers, (3) continue to advancetheir knowledge, communication and leadership skills by using technology, continuingeducation, solving problems, and serving in technical or professional societies, and (4) applytheir understanding of societal, environmental, and ethical issues to their professional activities.These PEOs are consistent with the institutional mission, and the program’s constituents’ needs.ABET EAC used to require
Paper ID #9099Integration of Manufacturing into Mechanical Engineering Education Cur-riculaProf. Robert L. Mott, University of Dayton Robert L. Mott, P.E. is professor emeritus of engineering technology at the University of Dayton. He is a member of ASME, SME, and ASEE. He is a Fellow of ASEE. He holds the Bachelor of Mechanical Engineering degree from General Motors Institute (Now Kettering University) and the Master of Science in Mechanical Engineering from Purdue University. He serves the Society of Manufacturing Engineers through the Manufacturing Education & Research Community and the SME Center for Education and
of Mechanical Engineering and American Educational Research Association.Dr. Teodora Rutar Shuman, Seattle University Teodora Rutar Shuman is the Paccar Professor and Chair in the Mechanical Engineering Department at Seattle University. She is an Affiliate Professor at the University of Washington. Her research includes NOx formation in lean-premixed combustion and electro-mechanical systems for sustainable processing of microalgae. Her work is published in venues including the Journal of Engineering Education, IEEE Transactions on Education, Bioresource Technology, Chemical Engineering Journal, Proceedings of the Combustion Institute, and Combustion and Flame. She is a member of the American Society of Engineer
states offering the most number of BSMETable 1: Number of Bachelor of Science degree programs in mechanical engineering related fieldsin the United States. Bachelor of Science Degree Program Mechanical Aerospace Materials Manufacturing Systems Mechanical Engineering Engineering Engineering Engineering Engineering Engineering Technology Related Related Related Related Public University 217 52 49 57 19 10 Private University 110 8
Page 24.1320.3them with projects.The Innovation Gymnasium at Southern Methodist University is geared to assisting small groupsof students solve real-world problems within courses and in extracurricular activities. The SMUdesign center is also active in engineering outreach programs, another area that such facilitiesoften contribute to. Other university design centers are still being planned and constructed. Forexample, Boston University’s Engineering Product Innovation Center is being constructed as ateaching and design studio equipped with the latest manufacturing technology to prepare studentsin all aspects of product creation, manufacturing and deployment.Many institutions showcase these design spaces in their external publications and
with applications to mechatronics and aerospace systems. Andrew worked as a post- doctoral researcher at the Centre for Mechatronics and Hybrid Technology (Hamilton, Ontario, Canada). He also worked as a Project Manager in the pharmaceutical industry (Apotex Inc.) for about three years. Before joining the University of Guelph in 2016, he was an Assistant Professor in the Department of Mechanical Engineering at the University of Maryland, Baltimore County. Andrew worked with a num- ber of colleagues in NASA, the US Army Research Laboratory (ARL), US Department of Agriculture (USDA), National Institute of Standards and Technology (NIST), and the Maryland Department of the Environment (MDE). He is an elected Fellow of
guarded optimism4to be at the forefront of the new educational culture. As the MOOC phenomenon moves towardsmaturity, the concurrent approach within the Department of Mechanical and ManufacturingEngineering was to assemble learning technologies and techniques that modernize the entireMME curriculum and deploy them in an appealing and contemporary package. The ComEx project is imbedded within the MME curriculum. That is to say, unlike thepreponderance of simulation and/or experiment based online learning modules that have beendeveloped for specific courses5-8, whether they be in chemical, electrical, mechanical ormanufacturing engineering, the ComEx studios focus on a set of thematically linked courses.The students utilize the modules as
Point, New York. He graduated from West Point in 1985 with a Bachelor of Science in Mechanical Engineering. He earned a Master of Science in Aerospace Engineering from the Georgia Institute of Technology in 1994 and a Ph.D. in Aerospace Engineering from the University of Kansas in 2004. He has taught courses in aeronautics, thermal-fluid systems, heat transfer, computer- aided design, and aerospace and mechanical engineering design. He is a licensed Professional Engineer and is a rated pilot in both rotary and fixed wing aircraft. Page 23.833.1 c American Society for Engineering
industries that are not necessarily in thefluids engineering mainstream1,2. For example, CFD technology is now being used to aid in the Page 13.1151.2design of subway tunnels, cooling systems for densely packed electronic enclosures, helpingsurgeons to understand the fluid flow in human body in hospital, and designing homeappliances1,2.Early CFD programs developed before 1980s were almost exclusively for aerospace applicationsand could be only run on mainframe computers by specialized analysts. These engineers weretrained in graduate schools to provide CFD development and application expertise. In 1990s, ahost of improved CFD programs with features