peers, the students had the opportunity to develop peer support and stronger interests and motivations for learning. Note that in addition to gaining technical knowledge, the students also learned team collaboration, which is essential not only in course and capstone projects, but also in their future career.(3) Hands-on and real-world oriented: The summer program encouraged the students to solve problems that are practical, meaningful, and with real-world implications. With the help of the faculty mentors, the students had the chance to tinker and dabble various prototypes until the perfection of the final product is reached.(4) It was offered online instead of face-to-face: Due to the COVID-19 pandemic, our campus was
best be met by exploiting multidisciplinaryapproaches. Our Senior Capstone Design Course has been established to demonstrate the valueand ingenuity which can be derived from cooperative design efforts among traditionalengineering disciplines.The projects for the senior design program are suggested by the faculty, industry, and academicundergraduate research through engineering grant contests. The requirements are that the projectbe open-ended, multidisciplinary, and have non-engineering constraints (e.g., economic,environmental, aesthetic). The students are given a choice of 10 to 15 projects (depending uponclass enrollment) and write a proposal stating their top choice. The senior design faculty teamassigns two to three students to each
Paper ID #11724The Impact of Personal Interactions on the Experience of African-AmericanMales on Multiracial Student TeamsMs. Kelly J Cross, Virginia Tech Ms. Cross earned her Bachelor’s of Science in Chemical Engineering from Purdue University in 2007. She earned her Master’s of Science in Materials Science and Engineering from the University of Cincin- nati in 2011. Ms. Cross is currently completing her studies in the Engineering Education PhD program at Virginia Tech and involved with multiple educational research projects with faculty and graduate students. Her research interests include diversity and inclusion
experiences.Dr. Marie C Paretti, Virginia Tech Marie C. Paretti is an Associate Professor of Engineering Education at Virginia Tech, where she co- directs the Virginia Tech Engineering Communications Center (VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication
publishing for various research projects. She’s also the founder and advisor of the first ASEE student chapter in Puerto Rico. Her primary research interests include investigating students’ understanding of difficult concepts in en- gineering sciences, especially for underrepresented populations. She also works in the development and evaluation of various engineering curriculum and courses at UPRM applying the outcome-based educa- tional framework.Dr. Manuel A. Jimenez, University of Puerto Rico, Mayaguez Campus Dr. Jimenez is a professor at the Electrical & Computer Engineering Department in the University of Puerto Rico Mayaguez (UPRM). He earned his B.S from Universidad Autonoma de Santo Domingo, Do- minican
friends, so we mostly had task division. What he did—he wasn’t calling me or they were just doing it and when I was asking he said, “Okay, don’t worry. We just done it. We went to the lab and we just finished it.” I got so mad and I went to the professor and said, “He doesn’t—just share those projects, because I have to get a grade, too.” He said, “You chose him as a leader, so you have to go take care of it.” I sent him a few e-mails and asked him, “Okay, you should just give me more tasks, you have to just make—” I don’t know; he just never did. For the second semester of capstone I got B, because our professor said, “I didn’t see you doing those electrical engineering things,” and I said
and engineering literacy practices within K-12 science classroom and professional communities.Ms. Noreen Balos, University of California, Santa Barbara Noreen Balos is a doctoral student in the Learning, Culture & Technology program at the University of California, Santa Barbara (UCSB). Prior to UCSB, she served as Student Affairs Officer for UCLA’s Biomedical Research minor program advising undergraduate researchers in their pursuit of MD or MD- PhD. At ASU’s School for Engineering of Matter, Transport, & Energy (SEMTE), she was a Project Manager, overseeing with CO-PIs, an NSF Innovation through Institutional Integration (Iˆ3) grant col- laborating with academic departments such as mathematics, physics
STEM fields, Engineering in Education and Access to Post-Secondary Education. From August 2006 through February 2008, she was the Associate Dean of Academic Affairs of the College of Engineering. She was Co-Pi of the NSF’s UPRM ADVANCE IT Catalyst Project awarded during 2008. From 2008-2016, she was Co-PI of the USDE’s Puerto Rico Col- lege Access Challenge Grant Project. From 2015-2018, she was the Coordinator of the UPRM College of Engineering Recruitment, Retention and Distance Engineering Education Program (R2DEEP). Currently, she is Co-PI of the project ”Recruiting, Retaining, and Engaging Academically Talented Students from Economically Disadvantaged Groups into a Pathway to Successful Engineering Careers
Washington include introductory and honors courses in bioengineering, tissue and protein engineering lab courses, diversity and ethics in bioengineering, lead- ership, service learning, and bioengineering capstone writing and design courses. She is committed to enhancing diversity and inclusivity in engineering, and creating opportunities for undergraduate students to engage in service and educational outreach. Dr. Hendricks has over a decade of experience leading K-12 educational outreach and summer camp programs at both Duke University and the University of Washington.Camille BirchCelina Gunnarsson c American Society for Engineering Education, 2018 Exploring the Interplay of Diversity and
III. CTF C OURSE D EVELOPMENTan on-campus research program that supports cyber-defense A. eCTF Problem Descriptionareas, including secure embedded systems. Faculty engagedin research are available to have daily interactions with rising The eCTF revolved around designing a secure audio digitalseniors to help them develop senior capstone projects and rights management (DRM) module for next-generation multi-rising juniors to train them to use foundational knowledge media players. The core multimedia player is developed to runrequired to assess vulnerabilities in embedded systems. Stu- on an embedded systems platform (Digilent Cora Z7
corporatesponsor and was heavily tied to real industry needs. By working with corporate mentors studentsbecame better acclimated to the engineering profession through the use of engineering acumen,and problem solving techniques. This opportunity allowed students meaningful early exposure tothe engineering discipline and helped to shape their understanding of the field. This engagementprovided a basis for future skills needed for project based learning such as capstone coursework[7].Among the major University partners for the Summer Bridge Program are the Math and ChemistryDepartments, the Learning Center, University Library, Career Services and the Writing Center.Each of these provide unique services that benefit the program. For instance, the Math
. Joshua A. Enszer, University of Delaware Dr. Joshua Enszer is an associate professor in Chemical and Biomolecular Engineering at the University of Delaware. He has taught core and elective courses across the curriculum, from introduction to engineering science and material and energy balances to process control, capstone design, and mathematical modeling of chemical and environmental systems. His research interests include technology and learning in various incarnations: electronic portfolios as a means for assessment and professional development, implementa- tion of computational tools across the chemical engineering curriculum, and game-based learning.Dr. Tia Navelene Barnes, University of Delaware Dr. Tia Barnes is
can build self-efficacy directly and encourage moremastery experiences.Contextual examples of each of Bandura’s four sources of self-efficacy in undergraduateengineering education: first, mastery experiences could consist of completing practice problemsto master theory, engaging in project work and hands-on activities to build engineering skills,and successfully working in teams and giving technical presentations. Second, role models whoshare a similar identity in populations of upper year students, alumni, outside speakers, or facultymay provide vicarious experiences. Third, classmates, teaching assistant, professors, mentors,friends and family may all provide social persuasion, and fourth, an individual's’ personal orextra-curricular
(VTECC). Her research focuses on com- munication in engineering design, interdisciplinary communication and collaboration, design education, and gender in engineering. She was awarded a CAREER grant from the National Science Foundation to study expert teaching in capstone design courses, and is co-PI on numerous NSF grants exploring com- munication, design, and identity in engineering. Drawing on theories of situated learning and identity development, her work includes studies on the teaching and learning of communication, effective teach- ing practices in design education, the effects of differing design pedagogies on retention and motivation, the dynamics of cross-disciplinary collaboration in both academic and
. His research and teaching interests include wearable computing, electronic textiles, and interdisciplinary design teams for pervasive computing. In 2006 he was selected for the National Science Foundation’s Presidential Early Career Award for Scientists and Engineers (PECASE) for his research in e-textile-based wearable computing.Dr. Lisa D. McNair, Virginia Tech Lisa D. McNair is an Associate Professor of Engineering Education at Virginia Tech, where she also serves as co-Director of the VT Engineering Communication Center (VTECC). Her research interests include interdisciplinary collaboration, design education, communication studies, identity theory and re- flective practice. Projects supported by the
engineering education, including a Statics workbook for undergraduate engineering students. She is the Director of Innovation Programs and Operations for the non-profit research collaborative, Ad- vancing Engineering Excellence in P-12 Engineering Education. Dr. Gurganus teaches several first and second year Mechanical Engineering classes along with the Mechanical Engineering Senior Capstone design course for UMBC. American c Society for Engineering Education, 2021Assessing Engineering State of Mind of First Year Undergraduate African American/BlackStudents in Scholar Programs (Work-in-Progress)Abstract Research shows there are various internal and external
, subject to areview of academic progress and financial eligibility. Some students were offered less than twoyears of support due to limited availability of project funds near the end of a grant period, and asmall number of students left the program.Activities. All S-STEM program activities were run or coordinated through the CoE’s EventsOffice with assistance from the Diversity Programs Office (DPO). The mission of the DPO is toprovide academic and non-academic support to increase enrollment, retention, and graduationamong under-represented minorities and women, but DPO services are available to all CoEstudents. The DPO collaborates with the university’s Learning Resource Center (LRC) toprovide academic support services and essay writing support
, students in the early years of computer science, they get these exciting project ideas about computer science and then their middle years, all they do is theory, which can push them out of the field. And then they go back in their senior year, where they start taking all of these, again, the exciting projects, final projects, the capstone project, but in the middle two years, that's where they lose excitement about the field. So part of it was retention through those tracks, to have people get a little bit more cyber security and data analytics for example in the junior year, to keep them engaged.”Track development has been collaborative as well, with faculty ownership of tracks where theirexpertise
served more than 2000students since its inception.Dr. Wickliff is blessed to work daily in the area of her passion – developing young professionals – in herrole at Texas A&M University. She is the Director of the College of Engineering’s, Zachry LeadershipProgram and a Professor of Engineering Practice. At Texas A&M University, she has taught Capstone Se-nior Design and Foundations of Engineering courses, but now teaches Engineering Leadership Develop-ment courses. She has also taught Project Management and Risk Management courses for the Universityof Phoenix.Dr. Wickliff has been honored with University of Houston’s Distinguished Young Engineering AlumniAward, the Black Engineer of the Year Career Achievement Award for New Emerging
Education Annual Conference and Exposition, Seattle, WA, Jun. 2015.[10] D. Kotys-Schwartz, D. Knight, and G. Pawlas, “First-year and capstone design projects: Is the bookend curriculum approach effective for skill gain?,” presented at the American Society for Engineering Education Annual Conference and Exposition, Louisville, KY, Jun. 2010.[11] S. Sheppard and R. Jenison, “Examples of Freshman Design Education,” International Journal of Engineering Education, vol. 13, no. 4, pp. 248–261, 1997.[12] S. M. Lord and J. C. Chen, “Curriculum Design in the Middle Years,” in Cambridge Handbook of Engineering Education Research, A. Johri and B. M. Olds, Eds. Cambridge University Press, 2014, pp. 181–200.[13
aseither an undergraduate or graduate student, and asked respondents to rate their experiences on ascale of 1 to 4, where 1 indicates a “poor experience, decreased my overall confidence ofsucceeding in structural engineering” and 4 indicates a “great experience, increased my overallconfidence of succeeding in engineering”. The most popular courses (as reported in Table 8)among the survey respondents were structural analysis and earthquake engineering. Senior(capstone/integrated) design, finite element analysis and foundation engineering were given thelowest ratings. The finding that capstone design was unpopular was somewhat surprising, but thesurvey questions did not allow us to uncover reasons behind these responses.Table 8. Respondents’ ratings