, tomeet the requirement of our ME curriculum; and the second part deals with control systemtheory and applications to meet the requirement of our EE curriculum.The designed multidisciplinary course uses the following strategies: theoretical development,software simulation assignments, and case study projects with real-world applications usingMATLAB/Simulink. Furthermore, we carefully design the case study project for the feedbackcontrol system portion so that EE students and ME students minoring in EE are able to constructand test the project in their laboratory course using a LabView platform.The paper is organized as follows. First, the course prerequisites, course content, and teachingmethods will be explained. Second, the outcomes of students
interests include robotics, computer vision, and image processing, with ongoing projects in humanoid robotics, robot navigation and guidance, biomedical image processing, and stereo and motion vision. He led WPI teams in the DARPA Robotics Challenge and NASA Space Robotics Challenge and is author or co-author of over 100 papers. His research has been supported by DARPA, NASA, NIH, NSF, and industry. He is a member of Sigma Xi, and a senior member of IEEE and ACM.Prof. Craig B. Putnam, Worcester Polytechnic Institute c American Society for Engineering Education, 2018 Robotics Engineering as an Undergraduate Major: 10 Years’ ExperienceAbstract:In 2007 Worcester Polytechnic Institute (WPI) launched an
, fire protection and lighting. Also, he supervises many courses in the frame of interprofessional projects (IPRO) program. Areas of Interests: - Zonal modeling approach, - Integration zonal models/building energy simulation models, - Zero Net Energy (ZNE) building, - Airflow in Multizone Buildings & Smoke Control, - Thermal Comfort & Indoor Air Quality, - Predictive modeling and forecasting: Support Vector Machine (SVM) tools, - Energy, HVAC, Plumbing & Fire Protection Systems Design, - Computational Fluid Dynamic (CFD) Application in Building, - BIM & REVIT: application to Architecture and Electrical/Lighting Design systems
from various nonprofit andgovernmental organizations including the United States Environmental Protection Agency (USEPA) are used. Various models used for environmental analysis and decision making areintroduced. The instructor’s knowledge gap is filled by inviting guest speakers to cover varioustopics. Students extensively use the Blackboard, a software system designed to facilitate themanagement of and access to educational information delivered via the Internet, for groupdiscussion and course materials transfer. A discussion forum is kept open on the courseBlackboard allowing students post course assessments anonymously as the course progresses.Student inputs are used to decide on the nature of assignments and projects. Two projects
instructionalmaterials for use in engineering classrooms to adapt the instructional materials for use inbusiness classrooms. The purpose of this paper is to report on the instructional materials thatintegrated methods to teach fundamental statistics skills with the introduction to businessapplications. We also tested these instructional materials in classrooms during summer 2005 andthe results of the test are reported. The ultimate goal of this project is to develop innovative andwell-tested instructional materials that help teach statistics to students in the colleges of businessand engineering.Literature Review Contemporary business practice has undergone a drastic change in this informationage where the business processes, accounting systems, and
Network for Computational Nanotechnology (NCN) education research team at Purdue University. She received her M.S. in agriculture in Fishery Resources from Huazhong Agricultural University and B.S. in Biological Science from Shaanxi Normal University in China. Her research includes evaluating first-year engineering students’ communication of nanoscience concepts through project-based-learning activities.Krishna Madhavan, Purdue University, West Lafayette Dr. Krishna Madhavan is an Assistant Professor in the School of Engineering Education at Purdue Univer- sity. He is Co-PI and Education Director of the NSF-funded Network for Computational Nanotechnology (nanoHUB.org which serves over 330,000 global researchers and
Director where she was responsible for the structural and thermal analysis of payloads. She served as Director of the Space Engi- neering Institute and in 2010 she accepted a position with the Academic Affairs office of the Dwight Look College of Engineering where she oversaw outreach, recruiting, retention and enrichment programs for the college. Since 2013, she serves as the Executive Director for Industry and Nonprofit Partnerships with responsibilities to increase opportunities for undergraduates engineering students to engage in experiential learning multidisciplinary team projects. These include promoting capstone design projects sponsored by industry, developing the teaching the Engineering Projects in Community
project requirements.8. Ability to explain the impact of project schedule, critical paths, and budgetary constraints on the effective execution of an engineering design.9. Ability to be perform a self-assessment of skills, aptitudes, and preferences against project roles and responsiblities.10. Ability to assess the societal impact of design choices and to make ethical engineering design decisions.Table 1 demonstrates the relationship between course learning objectives and ABET (a) through(k) criteria. Table 1: MSD Course Learning Objectives Mapped to ABET Attributes (a – k) MSD Objectives (abbreviated) ABET Defined Attributes (a) (b) (c) (d) (e) (f) (g) (h
other partneringinstitutions to enhance the program are discussed. Also included in this paper are themajor curriculum development and outreach activities, including an interdisciplinarycapstone design project to provide opportunities for students to design, manufacture, andactually market a product, which can stimulate students’ interest in real-world productrealization, the summer manufacturing workshop for high-school teachers and students,and research programs to develop laboratory facilities and support graduate programs.IntroductionTo live well, a nation must produce well. U.S. manufacturing is a critical area that cannotafford to be lost, but it is facing a great challenge. When the industry’s manufacturingjobs are out-sourced
2006-1279: INNOVATION AND IMPROVEMENT OF A MULTIDISCIPLINARYENGINEERING DESIGN COURSE: INCREASING INTERDISCIPLINARYINTERACTIONSteven Northrup, Western New England College Page 11.766.1© American Society for Engineering Education, 2006 Innovation and Improvement of a Multidisciplinary Engineering Design Course: Increasing Interdisciplinary InteractionAbstractInnovations to a multidisciplinary team design experience have been made with the objective ofincreasing the level of interdisciplinary design required for successful project completion. Theproject required teams of four to five students to design, machine
Adventurers must do this: Adventurers must also do this:TasksWeek 1 Uncovering Your Creative Identity9/1-9/7 - Week One Content Quiz - Complete at least 1 Exercise & Reflection SurveyWeek 2 Idea Generation Project Phase 1: Exploration Statement9/8-9/14 - Week Two Content Quiz & Reflection - Complete at least 1 Exercise & Reflection SurveyWeek 3 Idea Evaluation9/15-9/21 - Week Three Content Quiz - Complete at least 1 Exercise & Reflection SurveyWeek 4 Creative Collaboration Project Phase 2: Design Statement &9/22-9/28 - Week Four
-disciplinary degree program. Thisconcentration is not intended to qualify for ABET accreditation under the programspecific criteria for electrical engineering.The Overall BSE Degree ProgramAfter extensive discussions, the founding faculty team decided to build around corevalues of engaged learning, agility and a focus on the individual. Engaged learning isaccomplished by having the main spine of the program be 8 semesters of project workconducted inside an engineering studio. This is an Aalborg style approach3 in whichthere is a single project experience every semester, accompanied by formal instruction inseparate courses. The overall four-year program of study is illustrated in Figure 1. Thespine of projects is the sequence of courses on the left
education has been noted by the National Academyof Sciences 4 and echoed in the “Engineer of 2020” report of the National Academy ofEngineering5 and more recently in President Obama’s strategy for American innovation6.Following the lead of the NAS and NAE, several universities have launched a variety oftechnology commercialization and entrepreneurship programs – short courses, workshops, cross-disciplinary courses, commercialization projects, and others7.This paper describes a sequence of three technology commercialization courses in the Master ofBiotechnology Program at Northwestern University. We developed these courses based onrecommendations of our industrial advisory board, our interactions with business developmentprofessionals, previously
, and S.M. in Electrical Engineering in 1980 and the Sc.D. in Electrical Engineering in 1987 from the Massachusetts Institute of Technology. Dr. Gennert is interested in Computer Vision, Image Processing, Scientific Databases, and Programming Languages, with ongoing projects in biomedical image process- ing, robotics, and stereo and motion vision. He is author or co-author of over 100 papers. He is a member of Sigma Xi, NDIA Robotics Division, and the Massachusetts Technology Leadership Council Robotics Cluster, and a senior member of IEEE and ACM.Dr. Taskin Padir, Worcester Polytechnic Institute Page 23.1049.1
Paper ID #12827Integrating Research in Sustainable Energy and the Environment across Dis-ciplines through a NSF funded REU SiteDr. Hua Li, Texas A&M University-Kingsville Dr. Hua Li, an Assistant Professor in Mechanical and Industrial Engineering at Texas A&M University- Kingsville, is interested in sustainable manufacturing, renewable energy, sustainability assessment, and engineering education. Dr. Li has served as PI and Co-PI in different projects funded by NSF, DOEd, DHS, and HP, with a total amount of more than 2.5 million dollars.Prof. Mohamed Abdelrahman, Texas A&M University-Kingsville Dr. Abdelrahman
Definition 0 No evidence of achievement 1 Limited evidence of achievement 2 Adequate evidence of achievement 3 More-than-adequate evidence of achievement 4 Substantial evidence of achievementThere is a very good synopsis,3on the definitions of rubrics which also referred to the manyreasons as to why rubrics should be employed.4Our old rubrics as shown above lack the clarity as to what to give the scores on.The D.O.S couldbe explained as follow: for each of the outcome under consideration, the assessing faculty wouldexamine the specific evidence (test, homework, project, paper, etc.) of student work and
domains. This trio will be referred to as ‘the facilitators’. Page 13.253.3The goal of the course was to give the students the opportunity to practice BID, so the primaryassignment for the class was a semester-long design project, constituting 65% of the students’course grade. Students were given complete freedom to choose the topic, with the onlyrequirement being that their project had to utilize principles taken from some biological source.The teams gave a proposal presentation in the middle of the semester on their project topic, andthis allowed an opportunity to give guidance and a preliminary assessment to the students. Thefinal product
Paper ID #10095Satellite Design for Undergraduate Senior CapstoneMr. Joseph Thomas Emison, Taylor University Joseph Emison is a Senior Engineering Physics Major at Taylor University. From spring 2013 to present he has served as the Project Engineer and VLF/E-Field Sensing Lead of the Taylor University ELEO-Sat nanosatellite in the Air Force Research Lab’s University Nanosatellite Program competition. Joseph will graduate in December 2014 and eager to continue doing research, whether in graduate school or industry.Miss Kate Yoshino, Taylor University Kate Yoshino is a junior at Taylor University studying Engineering
engineering and advised capstone design projects within the robotics and automation option. He received his PhD and M.S. degrees from Purdue University, both in electrical engineering. He received his BS in electrical and electronics engineering from Middle East Technical University. Dr. Padir currently teaches undergraduate robotics engineering courses at WPI, advises student projects and participates in curriculum development activities for WPI's robotics engineering BS degree. Page 14.428.1© American Society for Engineering Education, 2009 Designing an Undergraduate Robotics Engineering
laboratories. These efforts have been primarily supported by two successive NSF NanoUndergraduate Education (NUE) projects. Our first activity for enhancing nanoscience andnanoengineering education was to introduce simple concepts of nanoscience and technology intoexisting required undergraduate engineering courses. These modules covered the core conceptsof nanomaterials and unique phenomena at the nanoscale. Introducing the concepts ofnanoscience and engineering at this early stage of undergraduate education was found topositively impact student interest in registering for a technical elective nanotechnology coursethat we developed as our second initiative. An interdisciplinary 3-credit nanotechnology course(Nanotechnology I) with a significant hands
partnership with the university’s Facilities Management, developed a highly instructiveand useful Alternative Fuel Vehicle Lab. Using existing university resources and a broad base of Page 13.509.2cross-disciplinary knowledge, we have been able to provide students with diverse, hands-oneducational experience that is often inaccessible to students outside of traditional engineeringprograms. Furthermore, the resulting K-12/STEM educational outreach program demonstrateshow these student-generated projects can inform the general public and inspire K-12 students topursue careers in science and engineering.Introduction & HistoryAs educators struggle to
the Space Engi- neering Institute and in 2010 she accepted a position with the Academic Affairs office of the Dwight Look College of Engineering where she oversaw outreach, recruiting, retention and enrichment programs for the college. Since 2013, she serves as the Executive Director for Industry and Nonprofit Partnerships with responsibilities to increase opportunities for undergraduates engineering students to engage in experiential learning multidisciplinary team projects. These include promoting capstone design projects sponsored by industry, developing the teaching the Engineering Projects in Community Service course, and developing curricular and co-curricular programs at the Engineering Innovation Center
question,estimating the scope of the project, writing an acceptable statement of work, completing theproject, and delivering results that could be readily disseminated.The undergraduate engineering curriculum at our institution has built-in project-basedcornerstone, sophomore, and senior capstone design courses. The master of engineering is a 30credit course-only program. By leveraging these two curricula, we developed a successfulmultidisciplinary modeling course where key learning outcomes strengthen student readiness toperform research. This paper describes the evolution of our overall strategy to overcomechallenges and put solutions in place. An overview of the course is presented in the context ofhow the pedagogy of student research has
, chemistry, biology and mathematics. The scholarship enabled theteam to be comprised of the same students from their freshmen to senior year tofacilitate the learning of effective team building skills, as well as serve as alongitudinal study. This paper will discuss the approach and activities used overtwo years: pre-junior and junior year for the engineering students that participatein co-op and the junior and senior for the non-engineers.At the beginning of the two-year project, students were provided four differentpotential problems to evaluate that required an interdisciplinary approach to solveand had direct relevance to issues in Ohio. After conducting an initial literaturesearch, each student selected two topics as a project that they would
including the multi-disciplinary project team members, the industry partners, the Users and external vendors. In the EDIC, he teaches and supervises undergraduate engineering students who engage in multidisciplinary projects. Eng Keng has a Bachelor of Engineering (Mechanical) from Nanyang Tech- nological University, and a Master of Science (Management of Technology) from National University of Singapore.Ms. Ameek Kaur, National University of Singapore Ameek Kaur is an Instructor in the Engineering Design and Innovation Centre (EDIC) of National Uni- versity of Singapore. Her current work involves training and facilitating the multidisciplinary engineering teams through their innovation projects. Prior to this, she has
in the capstone experience. However, there is little transition between the highlydefined problems provided in lecture and laboratory courses versus the open-ended projectstudents are asked to solve in their capstone design course. The capstone design projects for theNanosystems Engineering program is provided by faculty across a variety of disciplines.Therefore, it became evident that rather than expecting each faculty mentor to provide certainbasic skills, a more effective approach would be to have all Nanosystems Engineering students towork on a smaller open-ended project in the last quarter of the Junior year to teach all theelements that they would need to apply more deeply in their capstone project the following year.The educational
character. These studies have highlighted the importance of cross-disciplinary skills and student engagement in large-scale, real-world projects. Dr. Exter currently leads an effort to evaluate a new multidisciplinary degree program which provides both liberal arts and technical content through competency-based experiential learning.Dr. Mark Shaurette, Purdue University, West Lafayette Mark Shaurette has a MS in Civil Engineering from the Massachusetts Institute of Technology and a PhD in Technology from Purdue University. He is currently an associate professor at Purdue University, was a 2012 Fulbright Scholar in Ireland, and has work experience that includes 30+ years of senior construction management practice as well
crucial to provide advanced trainingto America’s future workforce [1-3]. In keeping with industry demands and the Wentworthtradition, hands-on nanotechnology laboratory experience is a central component of Wentworth’semerging nanotechnology and engineering course offerings. The impact on undergraduatescience and technology education is significant, and the project is generating new researchopportunities for undergraduate students. The nanotechnology laboratory allows students todevelop nanotechnology-related knowledge and skills through their coursework that can later beapplied to further research, improve design projects, and create solutions to improve the overallquality of life. The laboratory is used not only by undergraduate students, but
AC 2012-5475: DEVELOPMENT OF AN INTEGRATIVE BIOMECHAN-ICS COURSE FOR STEM MAJORSDr. Yogendra M. Panta, Youngstown State University Yogen Panta is an Assistant Professor of mechanical rngineering at Youngstown State University, Ohio. He has been teaching and developing courses and research projects in the fluid thermal area. He is cur- rently conducting applied research in thermo-fluids and computational fluid dynamics with local indus- tries and federal agencies. Panta received a B.E. degree from Tribhuvan University, an M.S. degree from Youngstown State University, and a Ph.D. degree from the University of Nevada Las Vegas. Panta’s re- search interests are in fluid dynamics, computational fluid dynamics (CFD
Engineering Analysis Statics) which is a project based learning activity designed specifically for promoting creativity, team-work, and presentation skills for undergraduate sophomore and junior students, as well as by exposing the students to the fascinating world of scientific/technological research based engineering. IDEAS is becoming the cornerstone event for the sophomore engineering students at UCF: from fall 2013 to fall 2017 approximately 2000 students have created, designed, presented, and defended around 600 projects and papers. c American Society for Engineering Education, 2018 Preparing the Engineering Student for Success with IDEAS: A Second Year Experiential