Paper ID #25828A Multidisciplinary Course and the Corresponding Laboratory Platform De-velopment for Teaching the Fundamentals of Advanced Autonomous VehiclesDr. Nima Lotfi, Southern Illinois University, Edwardsville Nima Lotfi received his B.S. degree in electrical engineering from Sahand University of Technology, Tabriz, Iran, in 2006, his M.S. degree in electrical engineering from Sharif University of Technology, Tehran, Iran, in 2010, and his Ph.D. degree in mechanical engineering from Missouri University of Sci- ence and Technology, Rolla, MO, USA, in 2016. He is currently an Assistant Professor with the Me- chanical
Paper ID #25660Work in Progress: Building the Mechatronics and Robotics Education Com-munityProf. Michael A. Gennert, Worcester Polytechnic Institute Michael A. Gennert is Professor of Robotics Engineering, CS, and ECE at Worcester Polytechnic Institute, where he leads the WPI Humanoid Robotics Laboratory and was Founding Director of the Robotics Engineering Program. He has worked at the University of Massachusetts Medical Center, the University of California Riverside, PAR Technology Corporation, and General Electric. He received the S.B. in CS, S.B. in EE, and S.M. in EECS in 1980 and the Sc.D. in EECS in 1987 from MIT
aimed at understanding the effect of introducing the newmethods on the students gaining a more in-depth understanding of uncertainty analysis, as wellas improving their efficiency by using different methods. Four different instructors presentedthese three methods in ten different sections of a laboratory course, and 60 students volunteeredto fill a questionnaire. The survey questions and results are discussed below.1. How much has your understating of the role that uncertainty plays in an experimental analysis improved?2. Evaluate the difficulty of uncertainty analysis using the Law of Propagation of Uncertainty (Taylor’s Series Expansion) which you learned in EGR 220.3. Evaluate the difficulty of uncertainty analysis using Monte Carlo
“Knowledge.” • “Abilities” refers to the power or capacity to perform an activity or task. For example, having the ability to use a variety of laboratory instruments [5], or the ability to plan and organize. • “Skills” are the capabilities or proficiencies developed through training or hands-on experience. Skills are the practical application of theoretical knowledge. Someone can take a course on investing in financial futures, and therefore has knowledge of it. But getting experience in trading these instruments adds skills [6]. • “Knowledge” statements refer to an organized body of information usually of a factual or procedural nature which, if applied, makes adequate performance on the job possible
of lecture and one class for labactivities. For these civil engineers, the lab used a water tank simulator. This simulator is a high-fidelity virtual copy of a laboratory scale water tank. It has a reservoir, an overhead tank, a levelsensor, a pump and a manual valve. The pump is used to transfer water from the reservoir to anoverhead tank and the level is reported real-time by the level sensor. The manual valve connectsthe overhead tank to the reservoir and water from the overhead tank is circulated back to thereservoir when the valve is open. The control logic (manual or auto) is implemented using avirtual copy of OpenPLC [2]. In auto mode, the programmable logic controller (PLC) controlsthe pump and keeps the level of the water between
to build an interconnected community of faculty, students, industry partners, alums and athletes who are dedicated to applying their technical expertise to advance the state-of-the-art in sports.Dr. Gregory L. Long Ph.D., Massachusetts Institute of Technology Gregory L. Long, PhD is currently the Lead Laboratory Instructor for NEET’s Autonomous Machines thread at the Massachusetts Institute of Technology. He has a broad range of engineering design, proto- type fabrication, woodworking, and manufacturing experience, and he has taught mechanical engineering design, robotics, control of mechanical systems, and a variety of mathematical topics for over 20 years before joining the faculty at MIT. He has published
2018].[7] G. S. May and D. E. Chubin, "A Retrospective on Undergraduate Engineering Success for UnderrepresentedMinority Students," Journal of Engineering Education, vol. 92, no. 1, pp. 27-39, 2003.[8] D. Shetty and J. Xu, "Strategies to Address "Design Thinking" in Engineering Cirriculum," ASME InternationalMechanical Engineering Congress and Expositio, vol. 5, pp. 1-8, 2018.[9] L. D. Feisel and A. J. Rosa, "The Role of the Laboratory in Undergraduate Engineering Education," Journal ofEngineering Education, vol. 94, no. 1, pp. 121-130, 2005.
3 6 Heat Transfer instructional content; thirdEngineering Phenomena. course is reserved for design projects.Civil Structural Analysis, 2 4Engineering Fluid Mechanics.Computer Senior standing in 2 4Science computer science. Circuits and Electronics First course is a projectElectrical Lab, Linear Systems, laboratory course
operator theory, as well as academic integrity in international engineering education.Prof. Chengbin Ma, University of Michigan–Shanghai Jiao Tong University Joint Institute Professor Chengbin Ma received the B.S. degree in industrial automation from East China University of Science and Technology, Shanghai, China, in 1997, and the M.S. and Ph.D. degrees in electrical engi- neering from The University of Tokyo, Tokyo, Japan, in 2001 and 2004, respectively. From 2004 to 2006, he was an R&D Researcher with the Servo Motor Laboratory, FANUC Limited, Japan. Between 2006 and 2008, he was a Postdoctoral Researcher with the Department of Mechanical and Aeronautical Engi- neering, University of California, Davis, USA. He
, and design - field team interaction.Mariana Watanabe, Purdue University Mariana Watanabe is an undergraduate in Civil Engineering specializing in Architectural Engineering at Purdue University, main Campus. During her time at Purdue, she has done research in the Applied Energy Laboratory for the ”Biowall for Improved Indoor Air Quality” project, has participated as team captain in two DOE Net-Zero Energy Building Design Competitions (Race to Zero Competition), and was elected president of the ASHRAE Purdue Student Branch in 2017. Mariana’s interests span the fields of sustainable engineering, high performance buildings and STEM outreach for girls. c American Society for Engineering