. Integrating forced displacement into engineeringeducation offers an opportunity to expose students to the potential of using their technical skillsto address complex societal challenges. It can also demonstrate the limitations of approachingsuch issues from a single perspective and the shortcomings of working within isolateddisciplines. Though the aim of such a course is to instill in students a long-term desire to engagewith the issue of forced displacement, framing concepts this way can also empower students totackle similarly complex issues requiring interdisciplinary thinking beyond their time in theclassroom. Course Planning and Development Recognizing the need for courses/modules meant to equip
effectively communicate the results of the design effort through a professionalengineering report and oral presentation. The design project will include material within andbeyond the curriculum as well as technical and non-technical considerations. Design projectsoften result in a deliverable prototype. As part of the course requirements and assessment of thestudents in the course, each student must: • Submit their engineering notebook weekly for assessment. • Attend weekly project meetings. • Provide evidence of completion of various design, construction, testing, and system integration milestones throughout the semester. • Participate in and develop content for presentations and poster sessions. • Submit a summative technical
, linear and nonlinear systems, and telecommunications.Prof. Kelilah Wolkowicz, University of Massachusetts, Lowell Kelilah Wolkowicz is an Assistant Professor of Mechanical Engineering at the UMass Lowell. Kelilah studies problems in healthcare that could be solved by applying design, control theory, and robotics. Her research focuses on developing methods and mechanisms to further enhance or promote user indepen- dence, while addressing users’ needs to remain, as much as possible, integrated socially and productively as members of their communities. Kelilah is an engineering faculty advocate for the River Hawks Scholar Academy, an engineering faculty fellow for DifferenceMaker, and a faculty advisor for the Society of
change the design landscape into a more inclusiveecosystem [1,2]. And the Design Justice principles can be a concrete set of guidelines that canhelp teach engineering students how to integrate Diversity, Equity, and Inclusion (DEI) practicesin their profession.Research shows [3], while typical engineering programs have plenty of design content, theconcepts of design justice are rarely taught. This paper talks about the experiences of introducingsome of the concepts of design justice into several undergraduate courses. It was done through acase study of a section of an interstate that was built in the 1950s cutting across a thrivingneighborhood that was eventually decimated. This case has been in recent news, since federalgovernment money is
awareness of diversity, employing best practices learned through participationin professional conferences with DEI components, and creating concrete strategies geared towardfostering a culture of inclusion within the curriculum. The full paper will go into more detail onthe initiatives being undertaken to achieve these goals and how such strategies are integrated intopreparing for a scheduled ABET visit.IntroductionCreating an engineering school academic culture that incorporates diversity, equity, andinclusion (DEI) awareness is imperative for the future of those schools’ success in educating newgenerations of professionals, as has been recognized by ABET and ASEE. ABET has includedchanges to Criteria 5 and 6, which was optionally piloted in the
the start of the Fall Semester. These requirements were established to ensureacademic equilibrium among participants.To elaborate on the application process, each prospective participant underwent an interview toassess their interests and understanding of sustainability concepts. Questions concerned theirperceptions of sustainability, its potential applications within their engineering-focuseduniversity curriculum, and how they envisioned integrating sustainability principles into theirfuture careers. The responses collected during these interviews were analyzed to establish apreliminary ranking of candidates. This ranking was further evaluated by two university facultymembers, each with distinct expertise: one specializing in sustainability
learners’ beliefs, monitoring, and control of test-enhanced learning. Educational Psychology Review, 33(3), 823-862. https://doi.org/10.1007/s10648-020-09578-2[42] Bjork, E. L., & Bjork, R. A. (2011). Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In M. A. Gernsbacher, R. W. Pew, L. M. Hough, J. R. Pomerantz (Eds.) & FABBS Foundation, Psychology and the real world: Essays illustrating fundamental contributions to society (pp. 56–64). Worth Publishers.[43] Soderstrom, N. C., & Bjork, R. A. (2015). Learning versus performance: An integrative review. Perspectives on Psychological Science, 10(2), 176-199. https://doi.org/10.1177%2F1745691615569000[44] Kirk-Johnson, A
Paper ID #41385Work-In-Progress: Holistic, Multi-disciplinary Systems Approach to TeachingSustainable and Contextual Engineering Concepts for Undergraduate StudentsDr. Courtney Pfluger, Northeastern University Dr. Courtney Pfluger is an Associate Teaching Professor at Northeastern University. In 2011, began as an Assistant Teaching Professor in First-year Engineering Program where she redesigned the curriculum and developed courses with sustainability and clean water themes. In 2017, she moved to ChE Department where she has taught core courses and redesigned the Capstone design course with inclusion pedagogy practices
, University of Connecticut Davis Chacon Hurtado, Ph.D., is an assistant research professor at UConn. He co-directs the Engineering for Human Rights Initiative, which is a collaboration between UConn’s Office of the Vice Provost for Research, the School of Engineering, and the Human Rights Institute, to promote and advance interdisci- plinary research in engineering with a clear focus on societal outcomes. Davis is working with a number of faculty on campus to develop research and curriculum at the intersection of human rights and engi- neering, such as the one discussed herein. Davis completed his Ph.D. in Transportation and Infrastructure Systems at Purdue University in West Lafayette, Indiana, in 2018. His research
time the course is completed, therefore it is becoming imperative that we leverage the 0 This material is based upon work supported by the National Science Foundation under Grant No. 2022299latest advances in neuroscience that highlight the need to focus on building new neuron inter-connects via experiential learning design to form an Integral Engineer[7].The educational sector is currently facing several significant challenges. These include : 1)the implementation of remote labs [1], 2) the need for skills specific to the semiconductorworkforce [9], and 3) the development of soft skills that are crucial for succeeding in today’sjob market [14][27].This paper sets out with a clear and focused objective: to use 21st-century tools such
responded to an IRB-approved follow-up survey about their learningexperiences. Reflective student feedback from both multidisciplinary trips indicated thatengineering students deepened their understanding of chosen topics in consideration of global,cultural, and societal factors, and that the non-engineering students enjoyed the visits more thanthey expected and overcame initial fears about engineering-related coursework, discoveringengineering practices in many aspects of their social lives. Overall, the students gave positivefeedback about the multidisciplinary trips and demonstrated achievement of the learningoutcomes. In the future, the authors plan to continue collaborations to further integrate the coursemodules and regularly evaluate the
the utilization of hands-on pedagogy as a means toenhance peer learning collaboration and curiosity among chemistry undergraduate students. Theresearch seeks to instill confidence and competence in students' grasp of fundamental chemicalprinciples, collaborative skills, and problem-solving abilities, while also nurturing their curiositythrough the integration of active learning techniques, laboratory experiments, and interactiveteaching methodologies. The study discusses an examination of the impact of hands-onpedagogy on students' peer learning collaboration and curiosity. The study was carried outamong undergraduate students taking foundations in chemistry, which includes engineering andother STEM majors. The study adopted a pre-post-test
questions asking if the student anticipated adhering to academicintegrity rules (Q13), if they felt that others would not adhere to academic integrity rules (Q14),and if the student felt that they were skilled enough in computer literacy to succeed in an onlineenvironment (Q15) or if there would be technical problems due to the online environment (Q16).ResultsPopulation CharacteristicsAs summarized in Table 2 the paired data population included four disciplines, namely CivilEngineering (CE), Chemical Engineering (ChemE), Electrical Engineering (EE) and MechanicalEngineering (ME). Of the four disciplines the majority was ME at 61% and CE at 36%. 84% ofthe students identified as male, 15% female, and 1% identified as agender. Fourth-year studentsmade
Ph.D. in Microelectronics-Photonics from the University of Arkansas. He attended Oklahoma State University where he graduated with a B.S. in Computer Science and an M.S. and B.S. in Electrical Engineering. He is currently a facultyDr. Emilie A. Siverling, Minnesota State University, Mankato Emilie A. Siverling is an Assistant Professor of Integrated Engineering and the Iron Range Engineering Bell Program through Minnesota State University, Mankato. She has a Ph.D. in Engineering Education, an M.S.Ed. in Curriculum and Instruction - Science Education, and a B.S. in Materials Science and Engineering. ©American Society for Engineering Education, 2023 A Self-Study of Faculty Methods
data science micro-credential have unique opportunities to improve critical super-skills, including writtencommunication, project management, iterative thinking, and real-world problem-solving.THE NEED FOR DATA ACUMENEngineering disciplines are increasingly adopting and integrating data science into their problem-solving and experimental approaches [1-3]; yet few engineering programs directly integrate datascience and visualization into their curriculum. In an effort to address this need and respond tothe NASEM report on Data Science for Undergraduates, which calls on institutions to increase“data acumen” through “a range of educational pathways,” [REDACTED] School ofEngineering and Applied Sciences launched an undergraduate micro-credential
multidisciplinary curriculum involving two or moresubject areas not only increases students’ competence in complex problem solving and thuscompetitiveness in the workforce, but also increases interest in future coursework for women [5,6, 7, 8]. The inclusion of engineering majors that support multidisciplinary pathways could helprecruit and retain more engineers into the workforce, as well as help balance the ratio of men towomen engineers practicing the profession.Recently at several universities (such as University of Colorado Boulder, Boise State, OregonState, Texas A&M, Purdue, and University of Southern California), there has been an emergenceof new engineering majors which incorporate outside disciplines into engineering studies,allowing for more
thoughtful mapping,planning, and alignment of student outcomes to direct assessments of students that must conductedby faculty on an on-going basis. This process must be systematic to facilitate the continuous reviewof programs.Faculty assessment of student outcome performance is a critical component of this process. Whilethe spreadsheet is still the most common assessment tool, several programs have developed othertools and instruments to aid in the assessment process. These tools are often used to automate someportion of the assessment process [2–5]. Programs develop tools in-house or purchase commercialsoftware. These tools may have several benefits such as including the systematic integration ofplanning and assessment, centralized maintenance
ofstudents, demand that we don't simply follow but become a leader for innovative approaches andmodels for an equitable, post-carbon, circular economy that supports a human flourishing andecological integrity. There is a need and opportunity to create a coherent program to form newengineering graduates capable of meeting technical engineering requirements woven with thesocial, economic, political, environmental, and other facets central to sustainability and resilience.In response, an interdisciplinary team of researchers proposed the creation of a new SustainableEngineering (SE) Minor at UPRM as part of a larger plan to develop a new Bachelor's degreeprogram in this area. This plan will allow concrete developmental progress while acknowledgingthat
Your Hand, a multidisciplinary collaboration between engineering and the artsAbstract: Raise Your Hand is an immersive, interactive sensor-driven dynamic art exhibit.Vision tracking software changes the video projections, mechatronics, and music composition inresponse to the height of a visitor’s raised arm. The 1 ½-year project brought together studentsand faculty from computer engineering, computer science, electrical engineering, industrialdesign, mechanical engineering, literature, media and communication, computational media, andmusic technology. Further, students were integrated into the project in different forms, includingcapstone design teams, Vertically Integrated Project (VIP) students, undergraduate research
: applying continuous improvement practicesand realizing that, in a sense, the program is in start-up mode (as in an entrepreneurial start-up)and therefore we need to be nimble and willing to evolve the program as we improve it andexpand it.As we have grown, we have also seen an increase in the number of students transferring fromother majors within the institution and from other colleges and universities. These includestudents who have courses that may satisfy some courses in our curriculum, particularly theintroductory programming courses (Python, R, Object Oriented Programming). This hasmotivated us to develop a course equivalency list which benefits the students and our academicadvisors.More on these topics in the next sections.Program
graduatingfrom high school are prepared to take university level courses in math and science. In 2022, theACT composite results fell to the lowest values since 1991. This generation of students is moredistressed, disengaged, digitally distracted, and discouraged when compared with previouscohorts.The purpose of this project is to identify the challenges faced by students transitioning from highschool to college after the COVID-19 pandemic. For this study, we are focused on the transitionof first-generation students as they experience their first semester in college. We believe that theCOVID-19 pandemic has caused significant shifts in the struggles and needs of incomingstudents. For the analysis, first semester students enrolled in an engineering
programs. VAx represented not onlya conversion from traditional travel-based programs but was a departure from conventionalprograms featuring unique characteristics as follows [6]:1) Participation of six engineering institutes and universities from five countries across Asia (Indonesia, Japan, Malaysia, Thailand and the Philippines),2) A 14-class interdisciplinary curriculum led by 12 multiethnic lecturers including six each in technological and social science fields, supplemented by non-lecture activities like group discussions and team presentations,3) An engineering knowledge component designed to stimulate participants’ borderless engineering interests beyond their specific field of study and teach participants to apply combined