Paper ID #23808The Effectiveness of a Multi-year Engineering EnrichmentDr. Linda Hirsch, New Jersey Institute of Technology LINDA S. HIRSCH is the Assistant Director for Research, Evaluation and Program Operations for the Center for Pre-College programs at New Jersey Institute of Technology. Dr. Hirsch has a degree in educa- tional psychology with a specialty in Educational Statistics and Measurement from the Graduate School of Education at Rutgers University. She has been involved in all aspects of educational and psychological research for over 20 years. Dr. Hirsch has extensive experience conducting longitudinal research
Paper ID #27387Board 126: Early Career Elementary Teachers’ Evolving Choices for Incor-porating Engineering into Their ClassroomDr. Jessica E S Swenson, University of Michigan Jessica Swenson is a post doctoral research fellow at the University of Michigan. She received her doc- torate and masters from Tufts University in mechanical engineering and STEM education. Her current research involves examining different types of homework problems in undergraduate engineering science courses, flexible classrooms, active learning, responsive teaching, and novice elementary engineering teacher development.Dr. Kristen B Wendell, Tufts
Paper ID #29409Kindergartners’ Engagement in an Epistemic Practice of Engineering:Persisting and Learning from Failure (Fundamental)Pamela S. Lottero-Perdue Ph.D., Towson University Pamela S. Lottero-Perdue, Ph.D., is Professor of Science and Engineering Education in the Department of Physics, Astronomy and Geosciences at Towson University. She has a bachelor’s degree in mechanical engineering, worked briefly as a process engineer, and taught high school physics and pre-engineering. She has taught engineering and science to children in multiple formal and informal settings. As a K- 8 pre-service teacher educator, she
the sciences.Dr. Jean S Larson, Arizona State University Jean Larson, Ph.D., is the Educational Director for the NSF-funded Engineering Research Center for Bio- mediated and Bio-inspired Geotechnics (CBBG), and Assistant Research Professor in both the School of Sustainable Engineering and the Built Environment and the Division of Educational Leadership and Innovation at Arizona State University. She has a Ph.D. in Educational Technology, postgraduate training in Computer Systems Engineering, and many years of experience teaching and developing curriculum in various learning environments. She has taught technology integration and teacher training to undergrad- uate and graduate students at Arizona State University
-bethke-wendellDr. Chelsea Andrews, Tufts University Chelsea Andrews is a post-doctoral researcher at Tufts University in Engineering Education. She received a B.S. from Texas A&M University in ocean engineering, an S.M. from MIT in civil and environmental engineering, and a PhD from Tufts University in Engineering Education. Her current research includes investigating children’s engagement in engineering design through in-depth case study analysis.Dr. Tejaswini S. Dalvi, University of Massachusetts, BostonChristine M. Kelly American c Society for Engineering Education, 2021 Assessing elementary students’ engineering design thinking with
Paper ID #34117Accessible Playground Design: A Community-Connected ElementaryEngineering Unit Focused on Designing Accessible Playground EquipmentDr. Tejaswini S. Dalvi, University of Massachusetts, Boston Tej is an Assistant Professor of Science Education and is affiliated with Department of Curriculum and Instruction and Center Of Science and Math In Context. She has a PhD in theoretical physics and has active research in field of elementary science and engineering education.Dr. Kristen B. Wendell, Tufts University Kristen Wendell is Associate Professor of Mechanical Engineering and Adjunct Associate Professor of
Psychology at George Mason University and I am Chief Education Officer at edMe Learning, a personalized learning company.Dr. Leigh S. McCue, George Mason University Leigh McCue is an Associate Professor in George Mason University’s Department of Mechanical Engi- neering. Dr. McCue received her BSE degree in Mechanical and Aerospace Engineering in 2000 from Princeton University. She earned her graduate degrees from the University of Michigan in Aerospace Engineering (MSE 2001) and Naval Architecture and Marine Engineering (MSE 2002, PhD 2004).Mr. Dale A. Lumme, American Society of Naval Engineers U.S. Naval Academy B.S. in Naval Engineering. Master of Education, University of West Florida. U.S. Navy Pilot, 1980-2005
National Leadership Advisory Board of the StriveTogether Network during its affiliation with the KnowledgeWorks Foundation (Cincinnati). He is currently a Senior Fel- low of the American Leadership Forum (Houston/Gulf Coast Chapter) and is serving on the Executive Committee of its Board of Trustees.Dr. Jean S Larson, Arizona State University Jean Larson, Ph.D., is the Educational Director for the NSF-funded Engineering Research Center for Bio- mediated and Bio-inspired Geotechnics (CBBG), and Assistant Research Professor in both the School of Sustainable Engineering and the Built Environment and the Division of Educational Leadership and Innovation at Arizona State University. She has a Ph.D. in Educational Technology
engineering education.Mr. James M Muscarella, Plymouth Whitemarsh High School Jim Muscarella is a physics and engineering teacher at Plymouth Whitemarsh High School in Plymouth Meeting, Pennsylvania. Over the past decade, he has created and developed an engineering program for high school students. Jim holds both a B.S. in Chemical Engineering and a M.S. in Education from Drexel University.Jessica S Ward, Drexel University (Eng. & Eng. Tech.) Jessica S. Ward serves as the Director of Operations for DragonsTeach and the Program Manager for the Experiential Practices in Education Research and Teaching in STEM (ExPERTS) program. During her tenure at Drexel University, Ms. Ward has successfully coordinated with multiple
Paper ID #26188Impact of Engineering Design-Focused Summer Academy Experience on In-terest Toward STEM Learning and Careers (Evaluation, Diversity)Dr. Kuldeep S. Rawat, Elizabeth City State University KULDEEP S. RAWAT is currently the Dean of Life, Physical Sciences, Mathematics and Technology and Director of Aviation Science program at Elizabeth City State University (ECSU).He has earned an M.S. in Computer Science, 2001, an M.S. in Computer Engineering, 2003; and, a Ph.D. in Computer Engineering, 2005, from the Center for Advanced Computer Studies (CACS) at University of Louisiana-Lafayette. He serves as the Site
EECS in 1987 from MIT. Dr. Gennert’s research interests include robotics, computer vision, and image processing, with ongoing projects in humanoid robotics, robot navigation and guidance, biomedical image processing, and stereo and motion vision. He led WPI teams in the DARPA Robotics Challenge and NASA Space Robotics Challenge and is author or co-author of over 100 papers. His research has been supported by DARPA, NASA, NIH, NSF, and industry. He is a member of Sigma Xi, and a senior member of IEEE and ACM.Dr. Walter Towner, Worcester Polytechnic InstituteDr. Torbjorn S. Bergstrom, Worcester Polytechnic Institute American c Society for Engineering Education
Paper ID #26190Board 118: The STEM Research Academy at Queensborough CommunityCollegeProf. Tak Cheung, CUNY Queensborough Community College Tak Cheung, Ph.D., professor of physics, teaches in CUNY Queensborough Community College. He also conducts research and mentors student research projects.Dr. Dimitrios S. Kokkinos, Queensborough Community College Dr. Dimitrios Kokkinos is an Associate Professor of Physics at Queensborough Community College of CUNY since 2017. He Completed his Electrical Engineering degrees (BE, ME, PhD) at CUNY and undergraduate in Physics in Europe. He worked in industry for AT&T
FACE Lab research group at Purdue. In his research, Hynes explores the use of engineering to integrate academic subjects in K-12 classrooms. Specific research interests include design metacognition among learners of all ages; the knowledge base for teaching K-12 STEM through engi- neering; the relationships among the attitudes, beliefs, motivation, cognitive skills, and engineering skills of K-16 engineering learners; and teaching engineering. c American Society for Engineering Education, 2019 “J UST L IKE ME” : IMPR O VING THE IMAGE O F ENGINE ERING FOR E LE ME NTAR Y SCHOO L STUDE NTS (RE S O UR CE EX CHANGE) | UNIT GR ADE LE VEL: 3 -5 J E S S I C A RU S H L E E K
Science and Engineering Fairs (Evaluation)Science and Engineering (S&E) fairs are a valuable educational activity that are believed toincrease students’ engagement and learning in science and engineering by using inquiry-focusedlearning, engaging students in authentic scientific practices and engineering design processes [1-3], and emphasizing creativity [4, 5]. Proponents also argue that S&E fairs enhance students’interest in science and science careers [6, 7] as well as engineering [2]. From the fair, studentsreport that they have learned more about the scientific process and engineering design, althoughthey may not all feel their attitudes towards STEM fields has improved [2, 8]. In this paper, wefocus on science attitudes, but because
teachers made in-the-moment that didand did not align with the planned curricular materials.Teachers’ instructional decision making To examine the kinds of supports that teachers use during instruction, we adapted theGess-Newsome (2015) instructional decision-making model that synthesizes other existingmodels of teacher professional knowledge (e.g., Ball et al., 2008; Grossman, 1990; Marks, 1990)as it articulates relationships among professional knowledge and teachers’ classroom practice. Inparticular, this framework helps articulate the ways that teachers’ topic-specific pedagogicalknowledge (TSPK), amplifiers and filters (i.e., teacher beliefs and prior knowledge), andteachers’ personal pedagogical content knowledge and skill (PCK&S
through undergraduate education. This frame is visually represented inFigure 2. Figure 2 Visual Representation of Relationships between Local Standards, National Directives, Higher Education Outcomes and Literature Synthesized for Engineering Epistemic Frame The epistemic frame elements are skills(S), knowledge(K), identity(I), values(V), andepistemology(E), and have been coded as such for analysis. Each parent code (S,K,I,V,E) has aset of sub-codes that allow for macro and micro analysis. The nomenclature for each code isparentcode.subcode, for example k.localknowledge represents the sub-code localknowledgeunder the parent code K. (but indicated in lowercase). Figure 2 shows how sub-codes
students discussed whichfoot type to use for the foot adaptation component of the survival suit design. The first instanceof EBR stated by Sean was also coded functionality because he explicitly referred to hisknowledge that human feet would work in the snowy conditions. The second instance of EBRwas coded technology, since Samuel justified his counterargument by referring to an existingtechnology, shoes. He used his prior knowledge about existing technologies to point out a flaw inhis teammate’s argument that human feet would be the best option for the survival suit.Example related to colors and camouflageIn addition to the choice of the survival suit covering material, students also had to choose whichcolor(s) to make the exterior of their suit
Engineering Ambassadors reflected on student learning andtheir own practice after each presentation. The EAs responded individually to a six-questionopen-ended survey (Appendix C). Responses that were general in nature are displayed in Figure3.Figure 3. Engineering Ambassadors’ General Reflections on Lesson PresentationsBriefly describe Which part(s) Which part(s) Which part(s) What will you What your lesson of the lesson of your lesson of your lesson do to make that knowledge went really will you do the will you change? and/or skill well? same? change
Agenda for Research. Washington, DC: The National Academies Press, 2014.[3] B. London, S. Rosenthal, S. R. Levy, and M. Lobel, “The influences of perceived identity compatibility and social support on women in nontraditional fields during college transition,” Basic and Applied Social Psychology, vol. 33, pp. 304-321, 2011.[4] N. D. Watkins, R. W. Larson, and P. J. Sullivan, “Bridging intergroup difference in a community youth program,” American Behavioral Scientist, vol. 51, pp. 380-402, 2007.[5] R. F. Catalano, M. L. Berglund, J. A. M. Ryan, H. S. Lonczak, and J. D. Hawkins, “Positive youth development in the United States: Research findings on evaluations of positive youth development programs,” The
I can do it can do itI can make a good scientific hypothesis. 0 1 2 3 4 5 6 7 8 9 10 Cannot Pretty sure For sure I do it I can do it can do itI can get myself to do my science school work. 0 1 2 3 4 5 6 7 8 9 10 Cannot Pretty sure For sure I do it I can do it can do it ReferencesAndrew, S. (1998). Self-efficacy as a predictor of academic performance in science. Journal of advanced
across the five periodical databases and restricted for peer-review journal publications. The resulting publications of each search was consolidated using 2Mendeley citation manager where duplicates were removed. Following the removal ofduplicates, we reviewed the article’s title and abstracts against the following research contextinclusion criteria: (1) participants in P-12 engaged in a STEM intervention with some focus onengineering, and (2) the measured affective view(s) focused on the views of the student as itrelates to engineering not the teacher, facilitator, or educator. Lastly, we scanned the remainingarticles’’ full-text against the
] A. K. Ambusaidi, and S. M. Al-Bulushi, “A longitudinal study to identify prospective science teachers’ beliefs about science teaching using the draw-a-science-teacher-test checklist,” International Journal of Environmental & Science Education, vol. 7, no. 2, pp. 291-311, April 2012.[6] K. D. Finson, “Investigating preservice elementary teachers’ self-efficacy relative to self- image as a science teacher’” Journal of Elementary Science Education, vol. 13, no. 1, pp. 31-41, October 2001.[7] R. Hammack, & T. Ivey, “Elementary teachers’ perceptions of engineering and engineering design,” Journal of Research in STEM Education, vol. 3, no. ½, pp. 48-68, 2017[8] C. Cunningham, C. Lachapele, and A
quantitative assessment tools, including Grit-S and Alternative Uses Test (AUT),and qualitative assessment tools, including open portfolios and showcase presentations. Weanalyzed three years of survey data from 159 youth who participated in after-school learningprograms at our research site. We also conducted interviews with three adult program staffmembers who administered the different assessments and collected their observations andreflections about youth’s attitudes towards them. Through participant observation and a focusgroup with 8 youth employees, we studied attitudes towards self- and peer-reviews in aprofessional training program housed at the center. Studying assessment procedures and youth’sattitudes towards them in these different
of an underlying factor(s), indicating that factor analysis is possible. Bartlett’s test ofsphericity measures the hypothesis that the item correlation matrix is an identity matrix, whichrepresents that factor analysis is not possible as the items are unrelated. A significant test result (p< 0.05) rejects the null hypothesis, indicating that the data are factorable [25].The number of factors were then determined using a scree plot examination, Kaiser test, andparallel analysis [24]. The scree plot is a line plot of eigenvalue factors that shows the point atwhich extracting more factors does not explain more variance. The Kaiser method retains factorswith eigenvalues greater than 1 [24]. Parallel analysis helps determine meaningful factors
interventionthat can be employed broadly to improve the self-efficacy of both pre-service and in-serviceteachers for teaching engineering, thus preparing future generations to make a global impact.References[1] C. Riegle-Crumb, K. Morton, C. Moore, A. Chimonidou, C. LaBrake, S. Kopp, “Do Inquiring Minds Have Positive Attitudes? The Science Education of Preservice Elementary Teachers,” Sci. Educ. vol. 99, pp. 819-836, 2015.[2] C. Alexander, G. Mayes, S. Hopper, S. Thiruvadi, and G. Knezek, “An Investigation of the Impact of Digital Fabrication Projects on Pre-Service Teachers’ Attitudes and Skills” in Proceedings of th Society for Information Technology and Teacher Education International Conference, SITE 2012 Austin, TX
‘selection’ (shown in yellow)or ‘non-selection’ (shown in pink) of renewable energy were described in a box. Figure 7. Group 1’s (girls) decision-making Figure 8. Group 2’s (girls) decision-making process in the first discussion
?" Paper presented at the 2016 IEEE Frontiers in Education Conference (FIE). Erie, PA.Dick, T. P., & Rallis, S. F. (1991). Factors and influences on high school students’ career choices. Journal of Research in Mathematics Education, 22(4), 281 - 292.Garriott, P. O., Raque-Bogdan, T. L., Zoma, L., Mackie-Hernandez, D., & Lavin, K. (2016). Social cognitive predictors of Mexican American high school students’ math/science career goals. Journal of Career Development, 44, 77-90. doi:10.1177/0894845316633860Gillen, A. L., Kinoshita, T., Knight, D., Grohs, J., Carrico, C., Matusovich, H. M., … Bradburn, I. (2017). WIP: Gatekeepers to broadening participation in engineering: Investigating variation across high
group as a senior engineer, and later brought his real-world expertise back into the classroom at Purdue University Calumet. He is currently a Clinical Associate Professor at the University of Illinois at Chicago where he enjoys success in teaching and education research.Prof. Jeremiah Abiade c American Society for Engineering Education, 2019 Execution Details and Assessment Results of a Summer Bridge Program for First-year Engineering StudentsAbstractThis paper reports the execution details and the summary assessment of a Summer Bridge Program(SBP) that is a part of an ongoing National Science Foundation (NSF) Scholarships in Science,Technology, Engineering, and Math (S-STEM
(the website will be included in thefinal paper. This website also contains details information about the project and theimplementation methodology).Data were collected to answer the following research questions:(a) To what extent does the pedagogical approach impact the attitudes of students towardsSTEM?(b) To what extent does the pedagogical approach improve the content knowledge of thestudents?(c) To what extent are teachers accepting and comfortable with the pedagogical approach?The Science/Math Teachers Efficacy Belief Instrument (S/MTEBI) [24] was used to measure theattitudes of the participant teachers. This 25-item instrument measures the Teacher EfficacyBelief (13 items) and Teaching Outcome Expectancy (12 items) dimensions on a 5