Paper ID #16486Measuring the Impact of Service-Learning Projects in Engineering: HighSchool Students’ PerspectivesTamecia R. Jones, Purdue University, West Lafayette Tamecia Jones is currently a doctoral student in the Engineering Education department at Purdue Uni- versity with a research focus on K-12 engineering education, assessment, and informal and formal learn- ing environments. She is a graduate of Johns Hopkins and Stanford University. Originally trained as a biomedical engineer, she spent years in the middle school classroom, teaching math and science, and consulting with nonprofits, museums, and summer
Paper ID #17221Title IX and Project Lead the Way: Achieving Equity through All-female Co-horts in Public School SettingsMs. Shawna Fletcher, Texas A&M University SHAWNA L. FLETCHER is Director for the Women in Engineering (WE) Program at Texas A&M Uni- versity. Her primary responsibilities include outreach, recruitment and retention programs for women students and faculty in the Dwight Look College of Engineering. She has been President of the Arizona Promoters of Applied Science in Education (APASE) since 2006. She holds an M.S degree in Bioengi- neering and B.S. degrees in Physiological Psychology and Microbiology
development opportunities related to project-based learning in middle and high school classrooms. Her academic training includes a B.S. in Physics and an M.S. in Biology, both from Auburn University.Prof. Virginia A. Davis, Auburn University Dr. Virginia A. Davis’ research is primarily focused on using fluid phase processing to assemble cylin- drical nanomaterials into larger functional materials. Targeted applications include optical coatings, 3D printed structures, light-weight composites, and antimicrobial surfaces. Her national awards include selec- tion for the Fulbright Specialist Roster (2015), the American Institute of Chemical Engineers Nanoscale Science and Engineering Forum’s Young Investigator Award (2012), the
technologyAbstract Teaching software development in environments that mimic industry practices isessential for teaching applicable real-word development skills. In addition, these delivery-basedprojects engage students in meaningful design work that encourages clear, sustainable code. TheSoftware Factory has provided such projects and environment to students at Montana StateUniversity (MSU) since the 2014 academic year. This project aimed to explore the effectivenessof such instruction for high school students with limited programming experience. Students fromBozeman High School, Bozeman, Montana, were selected to work in a team with two MSUundergraduate students with the goal of creating an Android application over the course of asummer semester
skills ofcritical thinking, collaboration, and communication. The program provides students with theconfidence needed to enter the dynamic workforce of the future, which requires understanding ofbasic structure, materials and electrical design and computing. This program is guided byproject-based learning, an experiential learning pedagogy that focuses on excitement,engagement, applying the scientific method and engineering process, and making a presentationto demonstrate mastery of these principles. ASPIRE introduces students to the fields of computerscience and engineering. Students participate in hands-on group projects centered on theInternet-of-Things. The experiential learning experience provides students exposure to computerprogramming
. c American Society for Engineering Education, 2017 Implementation and Evaluation of an Engineering-Focused Outreach Program to Improve STEM Literacy (Evaluation)AbstractThis paper presents implementation and evaluation of an engineering-focused outreach programgeared towards exposing the middle and high school student population, especiallyunderrepresented and underserved groups, to science, technology, engineering, and mathematics(STEM) fields and careers. The STEM Academy project is a partnership between NASA,Elizabeth City State University (ECSU), school districts, state agencies, and other STEMenrichment programs. The program adopted a well-established NASA STEM curriculum withproblem-based learning at its core and
,technology, engineering and mathematics (STEM). The goals of this project were to develop anintroductory engineering design course for MSEN students with mentoring from undergraduatesin MEP, improve the self-efficacy and interest in engineering among student participants, and builda pipeline of minority students interested in pursuing an engineering degree at NC State.It has been widely reported that the U.S. must produce more highly skilled individuals in the STEMfields in order to sustain its historical competitive advantage in these areas. According to anexecutive report issued by the President’s Council of Advisors on Science and Technology(PCAST), the U.S. will need to increase the number of students who receive undergraduate STEMdegrees by
including the different areas in ECE, faculty, undergraduate and graduate programs, class sizes, and salaries of graduates. Dr. Smith also answered the girls’ questions such as application requirements and curriculum design. 2 ECE-GIRLS 2014 Activity Dec. 8, 2014, Monday 4:15 pm Orientation (Long-Sleeve Shirt and Flash Driver Pick-up) 4:30 pm – 5 pm Meeting Department Chair Dr. Scott C. Smith 5 pm – 5: 40 pm Meeting Female Professors in Engineering 5:40 pm – 6:45 pm Demonstration and Discussion of Senior Design Project by Dr. Mark Schroeder
and implementing professional development programs, curricula, and assessment of student learning for K-12 teachers in STEM. At the college level, he had collaborated on projects exploring teaching methodologies and assessment strategies in undergraduate courses in the sciences, engineering, and computer science. Dr. Kimmel has received numerous awards in recognition of his service, including: ASEE 1985 Vincent Bendix Minorities in Engi- neering Award, and ASEE CENTENNIAL MEDALION for ”Significant Lasting Impact on Engineering Education,” 1993. The NJIT Foundation Overseers Public and Institute Service Award, 1981 (First Re- cipient) and in 2005; and the Allan R. Cullimore Distinguished Service Award (NJIT) for
opportunities for the students to design and engineer possible solutions.The faculty works closely with classroom teachers (K-12) to ensure that the above mentioned projects are incorporated intothe curriculum throughout the school. Interdisciplinary units (IDU) of study between the STEM subjects are being developedthat encourage faculty and students to work across subject areas. Projects include Personal Projects, Extended Essays,bilingual roof-top farming for primary school students, and opportunities for students to work with outside researchers.There are also specific enrichment courses taught: green chemistry, earth systems, sustainability in a changing world, andnatural water systems.IntroductionThe environmental challenges facing Hong Kong will
Paper ID #16192STEM-Discovery – An Integrated Approach to DESIGNDr. Heath Tims, Louisiana Tech UniversityDr. Kelly B. Crittenden, Louisiana Tech University Dr Kelly Crittenden is a member of Louisiana Tech University’s Integrated STEM Education Center (ISERC), and the Harrelson Family Professor of engineering. He earned his PhD and BS in BioMedical Engineering in 2001, and 1996 respectively. Dr Crittenden’s interests lie in K-12 outreach, developing project-driven curricula, and product design. c American Society for Engineering Education, 2016 STEM-Discovery – An Integrated Approach to
engineering as a rich context for integrated STEM learning. She is particularly interested in social justice and socially-conscious pedago- gies for teaching engineering to Pre-college students, especially those pedagogical strategies like project- based service-learning. Sneha holds her Masters in Education-Curriculum and Instruction from Cal Poly Pomona University, and her Bachelor of Arts in Liberal Studies from Azusa Pacific University. c American Society for Engineering Education, 2017 A Framework to Guide the Implementation of Pre-College Service-Learning Engineering Curricula Sneha A. Tharayil, The University of Texas at AustinIntroduction
Purdue University Purdue University sguzey@purdue.edu tamara@purdue.edu Project Website: http://engineeringteams.org Project Description The EngrTEAMS project is an engineering, design-based approach to teacher professional development that has 50 teachers per year designing curricular units for science topic areas related to the Next Generation Science Standards (NGSS). The project includes summer professional development and curriculum writing workshops, paired with coaching, to allow teams of teachers to design engineering curricular units focused on science concepts, meaningful data analysis, and measurement. Each unit goes through an extensive design research
Paper ID #16824Incorporating Engineering Programs for Secondary Schools in Trinidad andTobago (Work in Progress)Miss Tasha Tiffany Tardieu, University of Michigan Recent graduate of the University of Michigan, studied Civil Engineering with an International Studies Minor for Engineers. As a student in the College of Engineering’s Honors Program, I investigated the incorporation of co-curricular engineering programs at the upper secondary school level in Trinidad and Tobago for my capstone project. This project will be continued beyond my undergraduate career.Dr. Shanna R. Daly, University of Michigan Shanna Daly is an
, the Making Connections project hasthree goals: 1) to better understand the perceptions people of color may hold about Making; 2)to better understand the culturally-embedded making practices that people of color may engagein, and 3) to leverage the themes identified in parts 1 and 2 to develop a range of museum-basedMaking activities that may be more inclusive of, and engaging for, members ofunderrepresented communities. In this paper, we focus on the first two goals of the project, andpresent preliminary findings from our exploratory data.Theoretical FrameworkWithout doubt, the ubiquity of creation and innovation across cultures positions Making as anactivity with nearly boundless potential to connect people from all communities to
with customers as an overhead crane technician for KoneCranes. Working in hazardous environments such as chemical plants, steel mills, and mines cultivated a passion for excellence in occupational safety. I completed my Masters of Science at North Carolina State University in December 2016 and am pursuing a Doctorate in Philosophy in Electrical Engineering. My internships at Ford Motor Company in Detroit, Michigan, USA and ABB Corporate Research Center in D¨atwill, Aargau, Switzerland provided me with hands on testing and design experience in power electronics. I reciprocated my value to the projects through improving testing procedures, redesigning main testing facilities, and improving the schedule outlook of
lead an Innovative Curriculum Design Team and directed OSU faculty and students in the research component of the project. On the smART project, Kerry serves as the arts partner and K-12 education specialist.Dr. Deborah M. Grzybowski, Ohio State University Dr. Deborah Grzybowski is a Professor of Practice in the Department of Engineering Education and the Department of Chemical and Biomolecular Engineering at The Ohio State University. She received her Ph.D. in Biomedical Engineering and her B.S. and M.S. in Chemical Engineering from The Ohio State University. Her research focuses on making engineering accessible to all students, including students with visual impairments, through the use of art-infused curriculum
Paper ID #15363Engaging Secondary School Students in Science by Developing Remote Lab-oratoriesDanilo Garbi Zutin, Carinthia University of Applied Sciences Danilo G. Zutin is currently a Senior Researcher and team member of the Center of Competence in Online Laboratories and Open Learning (CCOL) at the Carinthia University of Applied Sciences (CUAS), Vil- lach, Austria, where he has been engaged in projects for the development of online laboratories, softtware architectures for online laboratories and online engineering in general. Danilo is author or co-author of more than 30 scientific papers published in international
-LSMSAmakersclubrepresentsasuccessfulandatruemanifestationofSTEMeducationathighschoolincludingcollaborationwithhighereducationalinstitution.Introduction:Effortstoimprovescience,technology,engineering,andmathematics(STEM)educationingrades K–12 are not new. Since the 1960s there have been lots of efforts to developcurriculum projects for science and mathematics. As a matter of fact we currently evenhave national standards documents to implement such STEM education. Yet, despite theincreasedattentiontoSTEMinpolicyandfundingarenas,STEMeducationinsomestatesisstilllackingandrequiresaspecialattention.Enquiry-based learning and deeper understanding has gained significant attention lately[1,2].Duetoitsimportance,lotsofeffortsfocusedrecentlyontheK-12STEMeducation.Recentlymanyreformshaveappearedtoaddressthescientificreasoning,criticalthinking,andproblemsolvingapproaches.Oneofthewaystoaddresstheenquiry
data analysis (qualitative, quantitative, and mixed methodological) for studies in developmental, educational, and counseling contexts. E-mail: Reagan.Curtis@mail.wvu.eduJohnna Bolyard, West Virginia University Johnna Bolyard is an Associate Professor of elementary and middle grades mathematics education in the College of Education and Human Services at West Virginia University. Her research interests focus on the development of mathematics teachers, particularly how K-8 teachers develop into mathematics teacher leaders.Dr. Darran Cairns, West Virginia University Darran is an Adjunct Associate Professor in Mechanical and Aerospace Engineering at West Virginia University. He is also the Project Director for Project
-of-school environments, including museums, science centers, afterschool programs, preschools, and everyday settings.Dr. Monae Verbeke, Institute for Learning Innovation Dr. Verbeke is an interdisciplinary researcher in the informal science learning. She has worked inter- nationally on projects incorporating a wide range of science learning institutions. As senior research associate for the Institute for Learning Innovation, she leads research and development of learning tools in the areas of science literacy. science interest and self-efficacy.Marcie Benne, Oregon Museum of Science and IndustryPam Greenough Corrie MS, Mt. Hood Community College Pam Greenough Corrie is the Head Start/Early Head Start Director for Mt
human condition. Engineering service learning and biomedicalprojects are presented to pique the interest of a broad population of students. ENGR 102 HSallows students to try hands-on, design and build projects while still in high school where therisk is low and teacher scaffolding and contact time is high. This broad approach to anintroduction to engineering course at the high school level is important to attracting the mostdiverse, brightest, and creative problem-solvers into the profession.This paper will briefly describe the ENGR 102 HS course curriculum. Five years of studentcourse evaluation survey data (2011-2012 to 2015-2016) for 1469 students both female (N= 289)and male (N=1180) were explored. Statistically significant differences were
- St. Louis Section. He has eight years of formal experience with K-12 engineering education.Dr. Shannon M. Sipes, Indiana University Shannon M. Sipes is an instructional consultant in the Center for Innovative Teaching and Learning at IU. In this role she provides professional development and individual consultation services for faculty with questions regarding their own teaching and student learning. Prior to her current role, she has served as the director of assessment helping faculty members with SOTL projects and classroom assessment. Shannon holds B.S. and M.A. degrees in psychology and a Ph.D. in curriculum and instruction with a focus on higher education.Mr. Jacob W. Benton, Primoris Services Corporation
to teach specific relevant math and sciencecontent standards and objectives, and receive formative feedback and content knowledgecoaching as they implement, evaluate and refine those lessons.Project TESAL (Teachers Engaged in Science And Literacy) is a three-year professionaldevelopment program that includes annual two-week summer face-to-face intensive professionaldevelopment opportunities and four additional day-long experiences throughout the school year.In addition, project personnel observe participants’ classroom instruction, providing feedbackand support on implementation of Engineering Design-focused lessons. In this paper, wedescribe the program and evaluation findings from the first two years of implementation.Project TESAL
exposure from passive treatment discharges.Aimee Cloutier, Texas Tech University Aimee Cloutier is a Ph.D. student studying Mechanical Engineering at Texas Tech University. She earned her B.S. in Mechanical Engineering from Texas Tech in 2012. Her research interests include biomechan- ics, rehabilitation engineering, prosthetic limb design, and STEM education.Mr. Guo Zheng Yew, Texas Tech University Guo Zheng Yew is currently pursuing his doctorate in civil engineering at Texas Tech University with a focus on finite element analysis and glass mechanics. Prior to his graduate work in the United States, he obtained his Bachelor’s degree from Malaysia and has participated in research projects involving offshore structures
Mathematics (STEM) program at her high school. She enjoys hiking and camping, and is a member of the student council, swim team, math team, and science bowl team. She recently repre- sented Maine at the National Junior Science and Humanities Symposium (JSHS) in Washington D.C., the International Sustainable World – Energy, Engineering, Environment – Project Olympiad (I-SWEEEP) in Houston, the International Science and Engineering Fair (ISEF) in Pittsburgh, and the Stockholm Ju- nior Water Prize Competition (SJWP) in Washington D.C. Furthermore, she spoke at a K-12 Educational Workshop at the American Society for Engineering Education Conference (ASEE) in Seattle, and at the 2015 Unity College Climate Science Workshop. She
Paper ID #16126Evaluation of Interactive Multidisciplinary Curricula in a Residential Sum-mer Program (Evaluation)Mr. Guo Zheng Yew, Texas Tech University Guo Zheng Yew is currently pursuing his doctorate in civil engineering at Texas Tech University with a focus on finite element analysis and glass mechanics. He also teaches an introductory course to freshman engineering students. Prior to his graduate work in the United States, he obtained his Bachelor’s degree from Malaysia and has participated in research projects involving offshore structures in Malaysia.Dr. Paula Ann Monaco, Texas Tech University Dr. Paula Monaco
of researchers to create a program to improve learning STEM in elementary grades, and the team was awarded an NSF Math and Science partnership called Science Learning Through Engineering Design (SLED). Kelley is cur- rently the PI on an NSF I-Test project called Teachers and Researchers Advancing Integrated Lessons in STEM (TRAILS). TRAILS prepares science and technology education teachers to integrate STEM content through biomimicry inspired engineering design within the context of entomology. Dr. Kelley the program coordinator for the engineering/technology teacher education program at Purdue. Dr. Kelley is also leading the second year Design Thinking course for the Purdue Polytechnic Insti- tute. The course
applications, including surface enhanced Raman scattering and anti-fouling surfaces. He also develops nanotechnol- ogy based lessons that integrate the STEM disciplines and develops human centered design projects that engage students in engineering. c American Society for Engineering Education, 2017 The Effects of Design Thinking Methods on Pre-Service PK-12 Engineering and STEM Teacher Capabilities, Confidence and Motivation in Creativity (Work in Progress)Rationale and BackgroundCreativity is an essential habit of mind for engineers and inherent in the engineering designprocess.1 Creative thinking in design is a focus of engineering education and K-12 engineeringand technology
student to have received the award, which was granted based on outstanding activities and projects that contribute to a better understanding of equity and diversity issues within Engineering Education. Additional projects involvement include: Engineering is Elementary (EiE) Project; Computational Think- ing/Pedagogy Project; Rocket Project of SystemsGo; World MOON Project; East Lubbock Promise Neighborhood (ELPN) Project; and Robotics. Since 2013 he has served as the president of the Nu Sigma chapter of Kappa Delta Pi: International Honor Society in Education and was the founding president of ASEE Student Chapter at Texas Tech University. He can be reached at ibrahim.yeter@ttu.edu.Dr. Hansel Burley, Texas Tech