Questionnaire,” in The SAGE Handbook of Personality Theory and Assessment:Volume 2 — Personality Measurement and Testing, London, 2008.[22] J.L. Holland, “A Personality Inventory Employing Occupational Titles,” Journal of Applied Psychology, 42(5),1958.[23] J.M. Schuerger. (1995) “Career Assessment and The Sixteen Personality Factor Questionnaire,” Journal ofCareer Assessment, 3(2), 157-175.[24] M.L. Galloway et al.. (1991). “Comparing the Cattell 16PF Profiles of Male and Female Commercial AirlingPilots,” Proceedings of the Human Factors Society 35th Annual Meeting.[25] V.L. Nagarjuna and S. Mamidenna, “Personality Characteristics of Commerce and Engineering Graduates – AComparative Study,” Journal of the Indian Academy of Applied Psychology, 34(2
engineeringprofessionals, women will need to engage and persist in engineering educational pathways. Thepurpose of this pilot qualitative case study was to examine the educational pathways andexperiences of three undergraduate women who are on track to graduate during the 2019-2020academic year a large, public university located in the southeast region of the United States. Byusing social cognitive career theory, the pilot study examined how and why three womenauthored their engineering identities through their secondary and post-secondary educationalexperiences to gain insight on their pursuit and attainment of an engineering degree and toinform a larger case study. Three themes, congruent with social cognitive career theory emergedfrom the data: eagerness to
answer the research question “What culturalfactors influence Muslim women’s occupational pursuit of computer science?”4. Methods This qualitative pilot study utilizes a case study approach through a small sample ofpeople’s experiences. Employing purposive sampling, four graduate Muslim female participantswere solicited from a large public university in Florida. All the participants were Ph.D. studentsmajoring in computer science and have been in the program for at least one year. Three out of fourstudents passed their qualification exams, two of them have also defended their proposals. Thefourth student was in her second year of the Ph.D. program and was taking courses to meet therequirements of the department for taking the qualifying
engineering. However, there aresome young female students who complete their engineering education despite the presence ofobstacles throughout their college years. This study addressed the university and personal factorsthat have hindered, motivated, and assisted women who were graduating with a degree inengineering. By studying and understanding the barriers that hinder women in completing adegree in engineering, as well as the factors that assist and encourage them, we can learn how tobreak down the barriers and how to facilitate the educational journey of female engineeringstudents.IntroductionIn the U.S. Technical occupations increase almost 5 percent per year, whereas the rest of thelabor force is growing at just over 1 percent per year
Paper ID #14811Dialogues Toward Gender Equity: Engaging Engineering Faculty to Promotean Inclusive Department ClimateJ. Kasi Jackson, West Virginia University Dr. J. Kasi Jackson is an Associate Professor of Women’s and Gender Studies at West Virginia University. Her research covers supporting women faculty in STEM, STEM education, gendered impacts on animal behavior research, and the representation of science in popular culture. She completed her PhD in biology, with a focus on animal behavior, and graduate certificate in women’s studies at the University of Kentucky. She is a Co-Investigator on a National Science
engineering community by-passing the specificneeds of under-represented women students?The findings from this study should be of interest to educational researchers, deans, practitioners,directors of women in engineering or minorities in engineering programs, and faculty who areinterested in the intersection of race, gender and academic experience. In particular, the findingspoint to recommendations for the retention of women and under-represented minorities inengineering, and to new avenues of research. They also provide evidence that a “one size fits all”approach does not work because students with multiple group identities experience things indifferent ways.Given these new findings, further study is needed to determine the programs or practices
an Affiliate Professor in the Department of Women Studies in the College of Arts & Sciences at the University of Washington. Suzanne’s research has focused on issues of recruitment, retention and advancement of women of all ethnicities in engineering, science and the workforce.Elizabeth Litzler, University of Washington Elizabeth Litzler is the Director for Research at the University of Washington (UW) Center for Workforce Development (CWD) and a Ph.D. candidate in Sociology at the UW. Her research interests include the educational climate for undergraduate and graduate students, gender stratification in education and the workforce, and gender and families. Liz is the research
persistence in an engineering major at a university. Despite current researchthat identifies best practices for STEM interventions that support the formation of youngwomen’s STEM identity (AAUW, 2010), a persistent research gap exists on how women’sexperiences affect their decision to enter and persist in engineering. Increased knowledge aboutwomen’s K-14 experiences, including the supports that may have influenced persistence, willprovide additional insight into how to construct an environment that encourages young women toenter and persist in engineering majors.This mixed-methods sequential study utilized a survey and a focus group to provide insight intofemale students’ feelings of self-efficacy and perceptions of the academic, social, and
career attainment, problematizing traditional notions of academic achievement and what is mean to be successful yet marginalized, and STEM identity and identity development in high-achieving students of color. She is currently the PI on two studies funded by NSF, the first of which investigates the causes behind why African Americans remain one of the most underrepresented racial groups in engineering faculty positions. The second study is working toward the design of a holistic racial and gender attentive mentoring program for engineering PhD students of color. c American Society for Engineering Education, 2017 Development of a national survey focusing on the relationships between race
among early career graduates in engineering and taking appropriate steps tosupport continued persistence in the field. Identification of these patterns is also helpful fordesigning a quantitative study that can point to the significance of gender differences in a largerpopulation.IntroductionWhat motivates men compared to women can be studied from a variety of different perspectives.Looking at the autonomy with which both men and women make choices in early career isespecially useful because developing autonomy is a central goal of an undergraduate education1and autonomy plays an important role in predicting stability within a field or career. The higherthe degree of autonomy on which an individual bases important life and career choices
student studying Industrial and Systems Engineering at The Ohio State University. In addition to working on undergraduate research in the Department of Engineering Education she is an Undergraduate Teaching Assistant for the Fundamentals of Engineering program for first-year engineering students.Amy Kramer P.E., Ohio State University Amy Kramer is a graduate student and research associate at The Ohio State University in the Engineering Education Department. She earned a B.S. and M.S. in Civil Engineering from The Ohio State Univer- sity in 2010 and 2013, respectively. Most recently she worked as a structural engineering consultant in Columbus, OH where she specialized in the design of reinforced concrete and steel
work should be built. Appropriating the turtle in 1 It is important to note, this is the first CS course, since UC Berkeley has been tracking student course data, thathas ever achieved that feat.the LOGO programming environment gave children a way to think about the principles ofcomputation and the practice of programming.Design of an Inclusive CS0 CourseAt UC Berkeley, there are two separate ways a students can get a CS degree. They can either get aBachelor of Arts (B.A.) through the College of Letters and Sciences (L&S), or get a Bachelor ofScience (B.Sc.) through the College of Engineering. The major difference between the two tracksis that students who get the B.A. get to take breadth requirements that gives them exposure tomore
better understanding of therelationship between CSE, beliefs about creativity, and the lived experiences of undergraduatewomen engineering majors will lead to strategies for educational reform that will benefit allstudents, increase pathways for female students into the engineering major, and contribute to thesuccess of women engineering. Methodology and Instrument A sequential explanatory mixed methods design was used for this study [30]. This two-phase methodology was best suited to this research because synthesis of the quantitative surveywith the themes discovered from the qualitative data analysis lead to answers to the researchquestions. In this sequential explanatory design, the quantitative survey
Paper ID #33951Understanding Gen Z’s Declining Engagement with WE@RIT, a Woman inEngineering ProgramMs. Kathrine Ehrlich-Scheffer, Rochester Institute of Technology (COE) Kathy has served as Director of Women in Engineering at RIT (WE@RIT) since 2015, and brings a rich array of life experiences to the position. After graduating with a bachelor’s degree in Public Affairs from a women’s college where she learned first-hand the value of a female-centric support network, Kathy made her way to Silicon Valley. There she studied CMOS Mask Layout Design which eventually led her to a position in IT for a semiconductor IP start-up
women's abilities) aswell as institutional policies and practices. Studies have shown that a chilly climate can have anegative impact on cognitive development and can also influence women’s desire to stay andpersist within a science, technology, engineering, or math (STEM) field. At The Ohio StateUniversity College of Engineering (COE), women are currently 20% of the overallundergraduate student population within the College.Improving women’s retention in engineering fields requires a multifaceted approach. Both directsupport for women, along with the development of allies, are crucial to promoting a long-lasting,positive climate for women studying in this field. Allies for Women Engineers (AWE) at TheOhio State University is a pilot cohort of 11
® students are learning in this three-year program entail skills that engineering studentsare exposed to in college; however, the Femineer® students are able to learn the curriculum throughhands-on experience and become confident in these skills before entering college. A pilot quantitative study was completed with the Creative Robotics curriculum with eightschools, 173 participants, in the 2016-2017 academic year. Some of the findings from this studyshowed that 92% of participants agreed or strongly agreed that they “enjoyed participating in theFemineer® Program” and 81% of participants agreed or strongly agreed that they “learned to solveengineering problems in the Femineer® Program.” With the Creative Robotics curriculum, 78% ofrespondents
employing quantitative methods are likely of most interest to practitioners who wouldwant to evaluate the effectiveness of this pedagogical approach before implementation in theclassroom. As a means of identifying future possible frameworks for further investigation on theimpact of peer coaching on female engineering students, this study explores the followingresearch questions: (1) How does student opinion about coaching transform through this class?(2) What new or revised perspectives do students gain, as both coach and coachee? (3) How doescoaching equip engineering women for the transition to the workforce? Findings indicate thatstudents’ initial apprehension about coaching progresses into recognition and experience ofbroad potential impact
will be designed based upon socialconstructionist theories using communicative prospective 11, which will reveal how femalestudents create, negotiate and shift their identities while selecting, studying and practicing inSTEM field. Research questions include: a) what do they think about graduate education; b)what does pursuing career in STEM field mean to female?; c) what messages are enunciate aboutSTEM discipline, and how does these messages differ at different points in a female’s life?; d)what were the initial factor(s) compelling females to choose STEM as field of study?; e) whatfeatures of STEM discipline seems enticing or dispiriting to females from pursuing educationand practice in these area?; f) what kind of guidance, mentoring, and
technical knowledge and merit based scholarship sets the ground work for a disengagementof students and pushes out those with a wider world view. The study that Cech [17] conductedshowed that students in universities actually decrease in their feelings of social engagement andresponsibilities as they progress through their education. While the changes are small, they aresignificant and point to a larger problem with undergraduate education and the socialization ofengineers.Engineering IdentityThe development of an identity as an engineer has begun to be considered a factor in theformation of a professional engineer. Capobianco, French and Diefes-Dux [18] looked at theconnection of a student’s ability to identity as an engineer and their persistence
Paper ID #20327Encouraging Young Women to Pursue Engineering: 25 Years of SummerCamp Successes and ChallengesDr. Jessica J. Lofton, University of Evansville Dr. Lofton is an Assistant Professor of Mechanical Engineering at the University of Evansville, and the Director for the OPTIONS in Engineering summer camps for middle school and high school girls. After earning her B.S. in Mechanical Engineering at the University of Evansville, she completed her M.S. and Ph.D. in Mechanical Engineering at the University of Illinois, with a graduate minor in College Teaching. She is a faculty advisor for the student chapters of
engineering settings.MethodsThis study analyzes student survey data using statistical methods in a quantitative researchdesign. Students in seven, large undergraduate engineering courses representing four differentengineering majors self-reported demographic information and emotional engagement as part ofa larger study that explored different factors which may inform student engagement inengineering classrooms.ParticipantsThe sample population in this study consisted of 781 undergraduate engineering studentsrecruited in the last two weeks of the term. Self-reported ethnicity included Asian (47%), Black(3.5%), Hispanic (3.5%), White (41%), Pacific-Islander (less than 1%), Native American (lessthan 1%), and Other (3%). 24% of the sample were female, 75
characterize STEM careers as unworthy of literate andcreative individuals [2]. Does she have a good point? During the last two decades substantial efforthas been expended towards reconciling developing students with what can be broadly defined asSTEM identities. Considerable recent research broadly on STEM identities [e.g. 3-21], includingseparate considerations of science, engineering and math identities, has focused on the identitiesof groups and intersectionalities underrepresented in STEM disciplines and careers. But, someresearch also suggests that merely inserting a STEM label, e.g. science or scientist, into adiscussion unleashes implicit biases of gender, race and ethnicity in middle school children [14].Surveys to assess self-efficacy and
Dec. 9, 2017].[11] J. A. Fredricks and S. D. Simpkins, “Promoting positive youth development through organized after-school activities: Taking a closer look at participation of ethnic minority youth,” Child Development Perspectives, vol. 6, no. 3, pp. 280–287, Sep. 2012.[12] B. A. Danielak, A. Gupta, and A. Elby, “The marginalized identities of sense-makers: reframing engineering student retention,” in 2010 IEEE Frontiers in Education Conference (FIE), 2010, pp. S1H–1–S1H–6.[13] R.M. Marra, K.A. Rodgers, D. Shen, and B. Bogue, “Women engineering students and self-efficacy: A multi-year, multi-institution study of women engineering student self- efficacy,” Journal of Engineering Education, vol. 98, no