, structural morphing, and energy harvesting. Ongoing projects range from developing high-bandwidth, high-authority actuators for vibration testing in jet engines to taking inspiration from how mosquitos eject drops from their wings before flight to discover new ways of decontaminating surfaces. His current research is funded by the Office of Naval Research, NSF, DoD, NASA, and several industry partners. Prof. Kauffman enjoys teaching a variety of courses in the MAE Department. He frequently teaches the Mechanical Systems Laboratory, which lets him interact with students and enjoy their ”aha!” moments in the smaller lab setting. He is fortunate to advise a fantastic research group with a great mix of graduate and
effective laboratory techniques. (safety training prior to lab sessions: glassblowing, potter’s wheel, pug milling, stained glass, scanning electron microscope) 9-12.P.1.1 Students will be able to use the Periodic Table to determine the atomic structure of elements, valence number, family relationships, and regions (metals, nonmetals, and metalloids). (use concept of electronegativity to predict which elements would be expected to form ceramics) 9-12.P.1.3 Students will be able to predict whether reactions will speed up or slow down as conditions change. (use the role of particle size as it relates to the concept of sintering of ceramics) 9-12.P.1.5 Students will be able to distinguish among chemical, physical, and nuclear changes. (use the
theresearch. This concise structure allowed students to quickly integrate into the program whileminimizing information overload.2.1.2 ProjectFor the following nine weeks, small mentoring groups were formed, with five faculty advisorseach working with a team of 2-3 students. 2 graduate students served as project coordinators aswell as near peer mentors. The students divided their work hours between a common laboratoryshared with the rest of the cohort and their advisor's laboratory, where they collaborated withtheir advisor's research groups. Intentional Strategies to improve teamwork and collaborationwere implemented, such as: • Collaboration: Students worked in teams, balancing collective tasks with individual contributions. Additionally
multiple opportunities to presenttheir research progress throughout the summer toexperts in the field. They also received professionaldevelopment training on research ethics, technicalcommunication, and launching careers in systemsbioengineering. Figure 1 shows a summary of theactivities in a typical summer. For two summers (2020 & 2021), the program was run as a completelyvirtual REU due to institutional constraints on visiting researchers due to the pandemic, as the nature ofsystems bioengineering and BDS research enables it to be conducted outside a laboratory setting. Toassess the program each year, we analyzed participant demographics, outcomes in presenting andpublishing their work, career outcomes, exit interviews, and anonymous survey
Center for Signal Integrity and CentralPennsylvania Research and Teaching Laboratory for Biofuels.2. S-STEM Student Support Services and ProgramsThe project aims to build off the current PSCC infrastructure and enhance the scholars’opportunities for social and academic integration and student-faculty interactions through a focuson four key components (S.T.E.M.): Scholar Support; Team-Based Cohorts; EngagementActivities; and Multi-Level Mentoring. These components are based on the Persistence ofInterest Framework of Figure 1 and provide opportunities for the scholars to foster theirpersistence related to academic interest, the rigor of the academics, and commitment to theSTEM programs.For example, we implemented a STEM Scholars’ Orientation Day
. degree from the University of Florida, Gainesville, in 1974; the M.S. degree from the University of New Mexico, in 1978; and the Ph.D. degree from the University of Colorado, Boulder in 1991. Dr. DeLyser, a member of the U.S. Air Force between 1965 and 1986, held a teaching position at the United States Air Force Academy, served as a development engineer at the Air Force Weapons Laboratory at Kirtland AFB in New Mexico and was the Requirements Officer for the Nellis AFB Ranges in Nevada. Prior to 2000, his research areas included pedagogy, outcomes based assessment, the study of periodic gratings used as antennas and in antenna systems, high power microwave interactions with large complex cavities, anechoic chambers
UniversityMs. Briceland McLaughlin, Boise State University Briceland McLaughlin is an academic advisor at Boise State University. She graduated with an M.Ed. from the University of Kansas in 2011 and has worked at higher education institutions across the country over the last decade in both student affairs and academic support roles. Briceland is interested in the intersectionality of student development theory and curriculum design.Dr. Donald Plumlee P.E., Boise State University Dr. Plumlee is certified as a Professional Engineer in the state of Idaho. He has spent the last ten years es- tablishing the Ceramic MEMS laboratory at Boise State University. Dr. Plumlee is involved in numerous projects developing micro-electro
of waves. Listening to Waves (LTW) is a program designed toincrease adolescents’ interest in STEM through the science of sound and music. Based onLTW’s early experience performing STEM outreach activities in schools, LTW recognized theneed to create easily accessible tools for visualizing and manipulating sound. In particular, LTWhas been developing browser-based implementations of a signal generator, an oscilloscope, and aspectrogram. These tools, commonly used in physics and engineering laboratories, represent andanalyze data gathered through the computer microphone and sent to the speaker. LTW hasmodified them and added functionalities that allow students to deepen their engagement byplayfully creating sound and music. For example, the
engineering courses. Examples of the extremes (levels 1 and 5) were given for responders’ guidance. To what extent do learning environments in your curriculum foster sharing of ideas, exploring concepts and working collaboratively? To what extent do you feel comfortable sharing ideas, discussing beliefs, and expressing incomplete or incorrect ideas in the learning environment? How is discrimination and harassment in the classroom environment dealt with if it occurs? How are different experiences and levels of confidence with laboratory work addressed in your courses?We then asked more specifically about particular types of diversity. While University ofWashington’s PACE study (2011) included some
propertraining on these devices to draw employment opportunities back to this country. By providing astate-of-the-art learning environment, technicians and technologists can become morecompetitive within the workplace. The project will help community colleges and 2- and 4-yearuniversity-based technical programs to update curricula to meet the expectations of industry bysupplying qualified technicians and technologists who have extensive hands-on experience withcurrent design tools. By developing a curriculum that includes hands-on re-configurableelectronics laboratories, we will be able to provide students in these programs state-of-the-arttraining tools that match the expectations of industry.FPGAsFPGAs were created approximately 15 years ago by the
typicallyyields knowledge gains (Cohen d-values) of around 0.76 σ (where σ denotes the standarddeviation), comparable to those resulting from expert human tutors (0.79 σ) and superior to thoseof answer based systems (0.31 σ).1 In a previous, laboratory-based evaluation, this superioritywas confirmed with a significant effect size of 1.21 σ and strongly positive impacts on studentmotivation (0.91 σ) as well.2,3This system further emphasizes the use of worked examples that are exactly isomorphic to thetypes of problems students are required to solve in the exercises. This approach is supported bythe well-known pedagogical importance of learning from examples in the early stages of learninga new cognitive skill.4-8 Studying worked examples before (and
Paper ID #18020Highlighting and Examining the Importance of Authentic Industry Examplesin a Workforce Development Certificate ProgramDr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of
Ph.D. degree from the University of California at Berkeley. He has previously held industrial positions as a Researcher at the Hitachi America Semiconductor Research Laboratory (San Jose, California), and Compiler Developer at Kuck & Associates (Champaign, Illinois). He has held a visiting research position at the US Air Force Research Laboratory (Rome, New York). He is a Fellow of the IEEE. He has been a Nokia Distinguished Lecturer (Finland) and Fulbright Specialist (Austria and Germany). He has received the NSF Career Award (USA).Andrew Elby, University of Maryland, College Park Andrew Elby’s work focuses on student and teacher epistemologies and how they couple to other cognitive machinery and help to drive
. Experimental Design and Data Collection3.1. Participants43 participants gave informed consent to take part in the study. 22 participants were engineeringstudents of various majors; the remaining 21 participants did not have formal education inengineering. 7 participants were excluded from the analyses due to technical problems duringEEG data recording, or excessive noise in the recorded data. In total, 36 participants (19engineering, 17 nonengineering) were included in the analyses.3.2. ProcedureUpon arriving to the laboratory participants were introduced to the research team, screened foreligibility criteria and asked to read the consent form and decide whether or not they agreed toparticipate in the study. Participants were next taken to the
hybrid energy systems and investigation of the structure-property relationships in ferroelectric, dielectric and piezoelectric materials in the form of thin films and bulk composites for sensing/actuation and energy storage/harvesting applications. Dr. Cook-Chennault’s research group, the Hybrid Energy Systems and Materials Laboratory, conducts work towards understanding the fundamental mechanisms and processing parameters that allow for the control of physical material characteristics. In addition to this work, Dr. Cook-Chennault is the director of the Green Energy Undergraduate Program (GET UP) program which is funded through the National Science Foundation and the Student Learn and Achievent in Aerospace and
, the heat transfercourse is taught in the junior year over a 10-week quarter with three 65-minute classes and a 90-minute laboratory session per week.In 2015, heat transfer was taught in an Inverted Classroom (IC). IC promotes students’ self-directed learning in fundamental heat transfer principles using online videos, quizzes, andinteractive problems outside of class time. Class time was used, in part, for mini-lectures,demonstrations, questions/answer sessions to correct student misconceptions, and exams toensure attainment of engineering fundamentals. However, the majority of class time was freedfor students to work on authentic engineering problems (AEP). These problems are key to theinstructional framework. The problems were developed by
includes hands-on re-configurableelectronics laboratories, we will be able to provide students in these programs state-of-the-arttraining tools that match the expectations of industry.FPGAsFPGAs were created approximately 15 years ago by the Xilinx Corporation [3]. Xilinx is still thelargest manufacturer of this technology in the world [4]. FPGAs are not only programmedthrough a traditional schematic fashion, they are also programmed using HDL. HDL is used todescribe the behavior of the circuits that are being created. Although HDLs describe nearly alladvanced circuits, certain circuits can be automatically synthesized, meaning that HDL code canbe rendered from a computer directly into a working design. This is particularly true of“reconfigurable
Paper ID #16519Research and Instructional Strategies for Engineering RetentionDr. Claudia J Rawn, University of Tennessee, Knoxville Claudia Rawn is an Associate Professor in the Materials Science and Engineering Department at the University of Tennessee, Knoxville. She is also the Director of the Center for Materials Processing. Prior to joining the University of Tennessee full time she was a Senior Research Staff Member in the Materials Science and Technology Division at Oak Ridge National Laboratory and a Joint Faculty Member in the University of Tennessee’s Materials Science and Engineering Department. She received her
based on her mentoring of students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE Fellow and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three
Paper ID #9940Virtual Community of Practice: Electric CircuitsProf. Kenneth A Connor, Rensselaer Polytechnic InstituteDr. Lisa Huettel, Duke University Dr. Lisa G. Huettel is an associate professor of the practice in the Department of Electrical and Computer Engineering at Duke University where she also serves as associate chair and director of Undergraduate Studies for the department. She received a B.S. in Engineering Science from Harvard University and earned her M.S. and Ph.D. in Electrical Engineering from Duke University. Her research interests are focused on engineering education, curriculum and laboratory
(Sawyer, 2012). For the purposes of this project, innovationis defined broadly as the pursuit of a creative, imaginative, or inventive solutions duringengineering coursework (as opposed to, for example, carrying out a set of laboratory proceduresor following directions in a computer learning module).Instrument Development OverviewThe purpose of this project was to develop an instrument to assess the emergent characteristics ofstudent groups in engineering classrooms and examine them in relationship to studentengagement and student innovation. Our strategy for developing the items was to develop aconceptual framework that described collaborative emergence based on extant literature, writeitems to reflect that framework, and then administer them to
the director of marketing for Drexel’s College of Engineering and director of operations for Worcester Polytechnic Institute - Engineering. Now, as CEO of Christine Haas Consulting, LLC, Christine travels around the world teaching courses to scientists and engineers on presentations and technical writing. She has taught clients across gov- ernment, industry and higher education, including Texas Instruments, Brookhaven National Laboratory, European Southern Observatory (Chile), Simula Research Laboratory (Norway) and the University of Illinois-Urbana Champaign. Christine works closely with Penn State University faculty Michael Alley (The Craft of Scientific Presentations and The Craft of Scientific Writing) and
physics and/or calculus course on top of that. Weneed to figure out a better way to help students manage their course load, but the issue is really ata larger programmatic level in which some of the courses are more demanding than the unit loadstudents receive credit for.Future ImplementationsWe will continue the program in the spring quarter with Strength of Materials (Mechanics ofMaterials), Strength of Materials Laboratory, Numerical Methods, and Statistics. Both of theproject tasks will be revisited while covering stresses and forces in rods, beams, columns, andbeam columns in Strength of Materials. The Numerical Methods class will make use of theproject by creating parametric simulation modules. Statistics will be integrated with the
to multidisciplinary engineeringprinciples through application to artificial organs. This project adapts and implements researchequipment and methodology used by medical and engineering researchers to teach engineeringprinciples. At the freshman level, students will be engaged in the scientific discovery processusing exciting hands-on design challenges to analyze artificial organs. In more advanced coreengineering courses and laboratories, students will explore the function of artificial organs in thelaboratory and investigate the variables affecting their performance.The engineering goals of this project are: (1) to explore the function of human and artificial or-gans; (2) to apply current research methodology state-of-the-art medical
were other solutions, but I felt that this was the best fit. To me, that’s what deciding on methods for research was. Figuring out the best fit.Overall, the students felt the research course and the process of developing their researchproposals prepared them well for the summer experience. However, the students felt lessprepared to conduct specific laboratory procedures and methods. One said that the proposal wasnot as detailed as she was now realizing would be needed to complete her project; several othersagreed that their big questions had to do with lab procedures, use of equipment, and similarpractical concerns. The students also said they were confident that they would receive thesupport needed to work through those issues
printing techniques and are highly visual and interactive, allowingstudents to see trends in pressure, flowrate, and fluid paths, as well as manipulate and measureflow rates and temperatures while collaborating with their peers. Due to their compact size, lessthan 10 by 10 inches for most modules, LC-DLMs have been employed in a variety of classroomorientations including traditional classrooms containing tablet arm chair desks and largerlaboratory spaces. Compared to traditional laboratory teaching equipment, LC-DLMs are simpleto transport, construct, and deconstruct. Examples of current vacuum formed LC-DLM cartridgesformed over 3D printed molds are shown below in Figure 1. A B C Figure
Paper ID #30772INCORPORATING SUSTAINABILITY AND RESILIENCY CONTENT INTOCIVILENGINEERING UNDERGRADUATE CURRICULUMProf. Bhaskar Chittoori P.E., Boise State University Dr. Bhaskar Chittoori joined the faculty of the Department of Civil Engineering at Boise State University in the fall of 2013. He is the director of the Sustainable and Resilient Geotechnical Engineering (SuRGE) Research Laboratory. His research focusses on solving complex geomechanics issues related to problem- atic clayey soils via experimental and numerical modeling studies. Some of his research focus includes, microbiological and chemical modification of
Laboratory at Shanghai Jiaotong Week 5 June 14 1:00pm-4:00pm University Graduate Student Symposium: Tianjing University of Business and June 18 Finance Week 6 June 25 10:00am-12:00pm Group Meeting Attended Presentation Competition for Young Investigator in North 1:00pm-4:00pm China Electrical Power University June 29 10:00am-12:00pm Seminar: How to give a professional presentation? Week 7 16:00pm-17:00pm Meet with the Chair of the Department
students, and her research in the areas of recruitment and retention. A SWE and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three engineering texts on classical controls, linear systems, and multivariable control. Dr. Rodriguez has
Engineering, PaperEngineering, and Engineering – Undecided; Engineering Design Technology, EngineeringManagement Technology, Manufacturing Engineering Technology; and Computer Science. AGraphic and Printing Science degree program has not been a part of this effort, as it is notrecognized by the National Science Foundation as a STEM discipline.A typical College graduate profile, as gathered from senior exit survey and from employersurvey, is a student who worked part-time while attending classes and took 10.5 semesters tograduate. The students enjoyed the practical hands-on side of engineering which they learn atthrough projects, laboratory, design-build competitions, and involvement in applied research.Employers rated College graduates as highly