, students are asked to work problem after problemto assess their abilities. TSM is an additional tool that can be used to help in the assessmentprocess. This method has been successfully integrated in a variety of courses, leading toincreased student participation and error recognition. Simple error correction can be a powerfulreinforcement tool to almost any engineering principal.Bibliography[1] http://www.nwrain.com/~newtsuit/recoveries/narrows/narrows.htm, retrieved November 8, 2006[2] ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf, retrieved November 7, 2006[3] Boud, D. and Feletti, G. (Eds.), “The challenge of problem-based learning,” St. Martin’s Press, New York, 1991[4] Schmidt, H. G., “Problem-based learning: An
public speaking, interviewing skills, and business etiquette should beincreased in an undergraduate curriculum.1,5”While technological/book knowledge information and competency is an integral part of theundergraduate process, academics “are only one key element of success.” All participants in thisstudy agree that graduates must meet the credentials and capabilities that correspond with theposition hired for, reconfirming what other researchers agree that “graduates need to have morejob related experience, communication and teamwork skills1,2.Professional and Career ResourcesAll participants in this study express desire to see a higher level of professionalism and businessskills. One participant indicated interest in developing boards and
partnerships for engineering technology programs. Anunwavering focus on faculty development has been central to the development of SCATEmodels and their success. The highly rated SCATE curriculum has been adopted or adapted foruse in technical programs by other schools and colleges around the country. Students benefit Page 13.154.2because learning that often appeared fragmented into various courses with no apparentinterconnections has undergone multi-disciplinary integration that is now changing the culture oflearning for first year engineering technology students. The new resource,www.TeachingTechnicians.org, will enable more teachers to learn about
science, technology, engineering, and mathematics (STEM ) among the incomingfreshmen so that they will be encouraged to pursue a degree in Engineering, Physics, orcomputer science. The duration of this research activity was four weeks, during which time thesestudents become familiar with research, teamwork, problem based learning, and the proceduresinvolved in engineering design and building. The first phase of the activity, lasting for one week,involved an introduction to basic theory focusing on electronics, mechanics, programming, andengineering design processes. The second phase of the activity, lasting the remaining threeweeks, involved researching, designing, and building a conceptual model and prototype of aminesweeper robot. With the
Perspectives on a Freshman Treatment of Electronic SystemsAbstract.The conventional approach to curriculum design is that students start with the basics of scienceand math and gradually progress towards a realistic integration of all their engineering skills in asenior capstone project. That approach is now challenged by changes in the assumed boundaryconditions. Students no longer progress through the program in lock-step. Electronicsapplications have evolved far beyond the components level and many cross-disciplinary skillsare needed. Finally, all students require a level of communications, team-working, trouble-shooting and representational skills that take a long time to mature so it is too late to wait till thesenior year to introduce them. The
focus our work and guide the research. The model of adaptive expertise hasbeen presented as a way of thinking about how to prepare learners to flexibly respond to newlearning situations, which is precisely what students are expected to do in the context ofdeveloping design solutions. We focus on “computational adaptive expertise,” which weabbreviate CADEX, since a major portion of an engineering curriculum focuses on developinganalytical and computational knowledge. Yet, students often struggle with applying ortransferring computational knowledge in the context of design. The current paper presents anoverview of adaptive expertise and relates this concept specifically to engineering designeducation. In addition, the paper presents an overview
principles through inquiry,collaboration and hands-on learning. We developed several LEGO-based activities to beimplemented in the secondary schools and first year college science curriculum. LEGO andROBOLAB are an effective set of tools for learning physics with this hands-on approach. LEGObricks, wheels, and other parts make it possible for students to make their own simpleexperimental apparatus, and LEGO robotics microprocessor (RCX) and associated sensors,together with the ROBOLAB software, create an environment for data collection and analysis.We have found that the LEGO workbench provides enough flexibility that the students can becreative in their engineering solutions, yet advanced enough that they can get quantitative datafrom their
me want to be an engineer.”This paper will present the overall curriculum of the MSTI camp with specific emphasis onactivities that could be implemented at other institutions. In addition, detailed assessment resultsof each activity will be presented to help institutions interested in implementing similar camps tochoose activities which appear to be of most benefit to the students.Introduction and OverviewThe Center for Science, Mathematics and Technology (CSMT) and the Bagley College ofEngineering (BCoE) at Mississippi State University were recently awarded a contract by theMississippi Department of Transportation (MDOT) and the Federal Highway Administration(FWHA) to develop and conduct a three-week residential summer institute for rising
were funded as curriculumdevelopment projects in 1998 (e.g., Enhanced Engineering Education Experience DUE-8854555and Integrated First Year Engineering Curriculum DUE-8953553), with the first of the eight fullfledged engineering coalitions funded in 1999 as multi-institutional experiments in innovation inengineering education. By 1991, an award was made to Richard Felder of North Carolina StateUniversity for a longitudinal study of the effects of innovative teaching (DUE-9150407) and in1993 prestigious NSF Young Investigator awards were given to engineers Cynthia Atman of theUniversity of Washington (DRL-9358516) and Martin Ramirez of Johns Hopkins University(DRL-9358518). Atman’s research examined how first-year engineering students
colleges, institutions of teacher education, and otherorganizations, in outreach and programming. In addition to these activities, the EOFNJinitiative has launched an awareness-building effort to disseminate critical messages tovarious stakeholder groups, including school administrators, and the parent community.A research effort, in its early stages, is underway to understand the impact of EOFNJactivities statewide and in several school districts.BackgroundThe adoption of new state K-12 curriculum content standards in 2004 raised awareness ofthe possible role of engineering in K-12 education in the state; however the resultingpolicy documents created ambiguity regarding the requirements for all students to studytechnology education and
Instruction into the Engineering Curriculum: The Team-Taught Integrated Writing and Design Course at Rowan University”, Annual Conference of the American Society for Engineering Education, Nashville, TN.19. Chen, J., Whittinghill, D. and Kadlowec, J. (2006) “Using Rapid Feedback to Enhance Student Learning and Satisfaction”, Proceedings of the Frontiers in Education Conference, San Diego, CA.20. Chen, J., Kadlowec, J., and Whittinghill, D. (2008) “Using Handheld Computers for Instantaneous Feedback to Enhance Student Learning and Promote Interaction,” International Journal of Engineering Education, accepted for publication June 2006
time frames between ninety minutes5, 10-12 and one day1, 13.Regardless of the time frame, all authors cited here employ repetition as a tool to highlight thedifference between non-Lean production and Lean production. The shorter time frames allowfor just two or three rounds to be used as a basis of comparison. For example, the exercisedescribed by Billington6 uses three rounds (push, pull with lot size = 3, pull with single-pieceflow) to demonstrate to students how Lean can reduce work-in-process (WIP). An advantage formultiple sessions, though, is that it provides the students with time to reflect on the events of aprevious exercise and plan for the next. The added time permits a less-structured exercise, asstudents are able to develop their
priority at that time,however, demanded integration of engineering science content to align the curriculum with theABET standards).The analytical content requiring math knowledge in such courses was adjusted to encourageparticipation and learning by the entire class. Additionally, our program’s distinctly vocationalfocus required that the ‘structure’ component of the central paradigm of materials science:process structure properties performance, be given reduced emphasisii. This posed achallenge because understanding and visualizing how microstructure design via processinginfluences material behavior lays the foundation for understanding, analyzing, predicting andcontrolling the performance of larger, real systems. Likewise, mechanical behavior
Engineeringprogram of George Mason University (GMU). The establishment of CEI actually predates theestablishment of the program at GMU. While its original goal was the creation of the civilengineering program itself, it has evolved to become an integral component of the program’soperations. CEICEI is governed by a Board of Directors, which for 2008, has 23 members composed of Alumni,senior engineers, and executives from local industry. Each board member has a three-yearappointment. Faculty in the Civil, Environmental, and Infrastructure Engineering Departmentare members ex-officio and are not included in the count above. A Vice-Chair, Chair, andExecutive Director are the officers of the Board and coordinate several standing committeesincluding a scholarship
world news. More specifically, if contemporary issues pertain to thediscipline of engineering, students will do little to maintain their knowledge apart from what isdiscussed in the classroom context. In reality, this topic must be more intentionally interjectedinto the curriculum to show application of engineering principles.Two categories of courses come to mind that should adequately support “soft” outcomes. Onesuch course would be a senior capstone design course. Berg and Nasr discuss such a course.1 Itis true that the capstone design course should be the pinnacle of an engineering program, wherestudents are able to integrate all aspects of their education into a challenging project. It is anatural place to discuss topics in the
. Page 13.1192.1© American Society for Engineering Education, 2008 Technology Skill Assessment of Construction Students and Professional WorkersAbstractIn recent years, technology has been introduced to the construction jobsites at an increasinglyrapid pace. As a result, there is a pressing need to increase the technology awareness and skilllevel of these practitioners and of those who are in academia. This new focus on technologyeducation has to be incorporated first of all in the general curriculum and specific pedagogy ofcivil engineering programs at the university level as these are the source of next generations ofleaders for the industry. In order to address this issue, we were awarded a NSF-funded
PrincipalInvestigators of this “Hands-On Learning in Engineering” project were Professors J. Dempsey, J.Carroll, J. Taylor, W. Wilcox, and A. Zander. The teaching methodology for the revised ES100course adapted the ‘integrated teaching and learning’ paradigm pioneered and developed by Drs Page 13.630.2L.E. Carlson and J.F. Sullivan at the University of Colorado at Boulder.2 The adaptation atClarkson is a combination of laboratory experience woven within an introductory computercourse teaching both MATLAB and LabVIEW. Significantly, note that just recently (February,2008), Drs. Sullivan and Carlson were awarded the prestigious 2008 Bernard M. Gordon Prizeby the
to demonstrate the professional HE teaching competencies and values expressed and required by ILTHE and SEDA. ‚ Be able to describe, interpret, evaluate, and reflect on their teaching practice in a theoretically coherent manner.2.1.3 Structure of the programThe program moves through three stages of professional development for university teaching:foundations, scholarship and reflection, respectively, in three compulsory modules althoughthese themes are also integrated within each module. An overview is given in Table 1. Furtherdetails on individual module aims, learning outcomes, structures and content can be found in(Schaefer, 2007)19. Module: Foundations of Learning & The Scholarship of Learning
Instrumentation Engineering in the University of ULSAN, South Korea, and his Ph. D in Electrical Engineering and Computer Engineering in Washington State University. His interests are in the areas of speech and image signal processing, signal processing in communication, photoacoustics and embedded systems.Claudio Talarico, Eastern Washington University CLAUDIO TALARICO received his Ph.D. in the University of Hawaii at Manoa in Electrical Engineering. He is currently an Assistant Professor of Electrical Engineering at Eastern Washington University. His research interests include design methodologies for integrated circuits and systems and complex systems-on-chips
AC 2008-339: THE TEST OF ETHICAL SENSITIVITY IN SCIENCE ANDENGINEERING (TESSE): A DISCIPLINE-SPECIFIC ASSESSMENT TOOL FORAWARENESS OF ETHICAL ISSUESJason Borenstein, Georgia TechMatthew Drake, Duquesne UniversityRobert Kirkman, Georgia Institute of TechnologyJulie Swann, Georgia Tech Page 13.1270.1© American Society for Engineering Education, 2008 The Test of Ethical Sensitivity in Science and Engineering (TESSE): A Discipline-Specific Assessment Tool for Awareness of Ethical IssuesI. Introduction There has been much written about the need for integrating ethics into the science andengineering curriculum. Efforts to accomplish this task are ongoing
engineers at all levels of leadership responsibility inindustry. The National Collaborative Task Force is leading the development of a new model ofprofessional education for graduate engineers in industry focusing on innovation, and leadership,and solving unknown problems. Educating engineers as creative professionals is a career longprocess of growth and further professional development, including the development of intrinsiccreative and innovative potential for leadership in engineering practice. This process extendsbeyond entry level undergraduate education to the highest levels of responsible engineeringleadership within the practicing profession of engineering. Professional education at this levelrequires an integrative combination of self
AC 2008-177: IDENTIFICATION OF QUALITY INDICATORS OF VISUAL-BASEDLEARNING MATERIAL IN TECHNOLOGY EDUCATION PROGRAMS FORGRADES 7-12Petros Katsioloudis, Berea College Petros Katsioloudis was born and grew up in Cyprus. He was educated in the United States where he received a Bachelors of Science degree in Science and Technology, a Masters of Education in Technology Education and a Doctoral Degree in Technology Education at North Carolina State University. Currently he is employed at Berea College, KY where he serves as an assistant professor and teaches various technology education courses. Petros is also serving as an ambassador of Cyprus to the International Technology Education Association
the previous ASEE World Congress we presented an overview of our 3-phase multi subjectdidactical method as an integrative part of our degree program Vehicle Engineering1,2. Our workhas shown that the first part of the 3-phase method helps sophomores learn to workautonomously, but also to be able to work in teams, and to present engineering results clearly andimpressively.The second phase of the multi subject PBL starts in the third academic year and encompasses thefifth and sixth semesters. A set of project topics is defined, based on different specializedtechnical subjects, with an emphasis on the development of real products. One of the mostimportant projects is the design, assembly and testing of a real racing car. To cope with theproject
AC 2008-891: THE IMPACT OF STUDENTS' LIFE EXPERIENCES ON PROGRAMRETENTION. A STUDY OF FEMALE ENGINEERING STUDENTS IN MEXICO.Carmen Villa, Texas A&M Carmen Villa is an Adult Education doctoral candidate at Texas A&M University. Carmen is a graduate assistant for Dr. Yvonna Lincoln and Dr. Carolyn Clark. Her research interests include underrepresented populations in higher education, cultural practices and their impact on education for Hispanic students.Jennifer Sandlin, Arizona State University Jennifer A. Sandlin is an assistant professor in the Division of Curriculum and Instruction at Arizona State University, where she teaches courses focused on consumption, learning, and
. The breakdown of the curriculum in 1955 is provided in Table 1, showing emphasisin Mathematics, Chemistry, Physics, six engineering sciences, and an integrated study ofengineering analysis, design, and engineering systems for professional background15. Page 13.1044.5 Table 1: Summary of Time Distribution for Scientifically Oriented Engineering Curricula Item Curriculum Weight 1 Humanistic and Social Studies One fifth 2 Mathematics and Basic Sciences (about equal One fourth
meet the needs of the evolving local andinternational markets. The curriculum, based on a broad palette of engineering subjects, projectwork, a mandatory internship, business and management training, and English as a secondlanguage, is still in place over a decade later, with a number of important additions.This paper will describe the main features of the curriculum as it is today and show how theimplementation of specific academic measures to the degree program has been a vital steptowards providing a more all-round educational experience. It also aims to illustrate how, in theabsence of a specifically designated ‘global engineering program’, a greater internationaldimension can be added to an already compact and demanding engineering
require a more holisticapproach. For example, For example, David Scheer 30, of the Center for Integrated Design andConstruction at the University of Utah College of Architecture + Planning proposed an approachthat utilized BIM across the curriculum in design studios, technical classes, and in culturalsubjects such as architectural history. The Civil and Environmental Engineering Department atWorcester Polytechnic Institute has integrated BIM into student research projects and graduatethesis, and have also integrated it in multiple undergraduate courses. Benefits to studentsidentified by faculty included the development of and integrated view of a building and itscomponents, better understanding of the construction process, advanced skill
liberal education needs in their general education programs. Institutions in the studywere chosen from the 2007 US News and World Report rankings of colleges and universities,focusing on high ranking schools in the category of undergraduate engineering programs andregional masters level universities with an engineering program.Previous studies in this area have focused primarily on the percentage of course work in generaleducation for the engineering student, recognizing the constraints in an undergraduateengineering curriculum that prepares students for practice in four years. Secondarily, previousstudies have focused on the courses (English, History, Art, etc) that comprise a general educationprogram. In contrast, with the shift in assessment
National Model for Engineering Mathematics Education. He is active in curriculum reform, and has led an NSF supported effort to integrate Mathematica laboratory sessions into the freshman calculus sequence at Wright State University.Anant Kukreti, University of Cincinnati Anant R. Kukreti is Associate Dean for Engineering Education Research and Professor of Civil and Environmental Engineering at the University of Cincinnati (UC). He is the lead investigator for the UC adoption of WSU's National Model for Engineering Mathematics Education. He teaches structural engineering, with research in experimental and finite element analysis of structures. He has received two Professorships, and won four
, Computer Science, and Technology, CSU- Kaibab LA, Student Development: An Alternative to Sink or Swim9:15 – 10:15 Concurrent Session Presentations Kaibab Applications of Technologies I Integrating Contemporary Issues II San Moderator: John Tester Moderator: Dieter Otte Francisco • Elizabeth Brauer, WeBWorK • Peg Pankowski, Assessment for Development in Electric Circuits Accreditation and Beyond • Bruno Osorno, Online Teaching of • William R. Peterson, Academe and Electrical