about the value of the ECE profession, theirinterest in the class, and their intensions to persist. The surveys also measured personalendorsements including the importance of ethical considerations in engineering decisions,the value of professional skills compared to technical training, and empathy. Data analysisrevealed that among novice students, the more they believed that the ECE professionafforded opportunities to benefit society and work with others (i.e., had prosocial value), themore interested they were in the class and in turn, the more they intended to persist in theirECE degree program. This persistence intentions relationship was not true for studentbeliefs about the ECE profession affording opportunities to gain wealth, power, and
experience the professional work environmentand allows application of knowledge gained in the traditional academic environment. Multiplestudies attest to the benefits of cooperative education.[1,2,3,4,5,6,7] In the engineering programs atGrand Valley State University, before beginning the capstone sequence of courses, students havecompleted three full semesters of cooperative education experience. During the semesters thestudents are on co-op, in addition to formal work activities, students are required to completeseveral learning modules. These modules cover topics including: professionalism in theworkplace; engineering ethics; engineering economics; and project management andcommunications - including corporate documents (reports and memos
-a faculty advisor and a graduate studentmentor-who oversee and guide the student during their nine-week internship in an independentresearch project. In addition to their research projects, TTE participants are trained in laboratorysafety, research protocol, and professional ethics; they partake in academic and professionaldevelopment seminars to prepare for a baccalaureate degrees and careers in science andengineering. Approximately 94% of the past TTE students eligible to transfer to a 4-yearinstitution were admitted to and are now enrolled various universities across the nation andmajoring in science or engineering in comparison to a 39% statewide average1. This paper willfocus on the impact of the program on the interest in pursuing an
AgreeI applied knowledge ofmathematics, science andengineering.I designed and conductedexperiments, as well as analyzedand interpreted data.I designed a system, component,or process to meet desired needswithin realistic constraintssuch as economic,environmental, social,political, ethical, health andsafety, manufacturability, andsustainability.I functioned on multi-disciplinary teams.I identified, formulated, andsolved engineering problems.I fully understood professionaland ethical responsibilities.I communicated effectively.I used the broad educationnecessary to understand theimpact of engineering solutionsin a global, economic,environmental, and societalcontext.I recognized the need for life-long learning and I can engage init.I have been aware
Pittsburgh. His research focuses on improving the engineering education experience with an emphasis on assessment of design and problem solving, and the study of the ethical behavior of engineers and engineering managers. A former Senior Editor of the Journal of Engineering Education, Shuman is the Founding Editor of Advances in Engineering Education. He has published widely in engineering education literature, and is co-author of Engineering Ethics: Balancing Cost, Schedule and Risk - Lessons Learned from the Space Shuttle (Cambridge University Press). He received his Ph.D. from the Johns Hopkins University in Operations Research and a B.S.E.E. from the University of Cincinnati. Dr. Shuman is an ASEE Fellow
community members. Even as students have good intentions, there is atendency to focus on what seems solvable over what community members indicate are priorities.This is a result of years of outcomes-focused, over relational, educational practices. In theabsence of meaningful relationships, it is easy to lose sight of the purpose of communityengagement. Technologies that students create do not serve the needs of community partners,and community partners suffer as a result.At the same time, engineers’ desire to help and strong work ethic lend themselves well toworking on issues of social justice [3]. In recent years, critical pedagogy has influenced service-learning programs as educators have attempted to engage the action-reflection
impact onretention rates goes beyond the academic realm, extending to students' overall well-being. Bycreating an environment that values and addresses their beliefs, educators contribute significantlyto students' holistic success and fulfillment in their educational journey [25-27].Ethical Considerations: Certain beliefs, especially those entrenched in ethics, morality, andreligion, can be deeply ingrained and highly sensitive for students [28, 29]. Faculty memberswith a nuanced understanding of these beliefs are better equipped to navigate discussions andteachings related to these delicate topics. Recognizing these matters' sensitivity enableseducators to approach them with the utmost care, ensuring a respectful and inclusive
about the project thatshe continued to teach this in her classes and expanded to other simple STEM projects. For atrebuchet project, I brought my nine-year-old daughter to the college. When she struggled toassemble some projects, my students learned the need for simplicity in their designs. Concluding Thoughts: This project-based curriculum meets the objectives for anIntroduction to Engineering course. For many colleges, that description is similar to this: “An introduction to engineering, its evolution, methods, and ethics. An overview of variousengineering disciplines and curriculum requirements, an introduction to a variety of modelingand analysis methods, written and oral communication activities, discussion of professionalethics and
. 4 I consider different disciplinary, environmental, local and global perspectives to understand natural and human systems. 5 I examine the influence of power structures Cultural Diversity in society to understand inequalities among different groups. 6 I ask questions without making judgments about people from other cultures Personal and Social 7 I discuss the importance of ethics and moral Responsibility
urbanplanning method. These approaches shift the power relationships traditionally established ininterview settings and allowed student participants to shape the direction of their interviews andstorytelling.In this paper, we first describe the central ethical and justice challenges to soliciting andengaging BIPOC students in research about their experiences. After describing the goals of thestudy, we explain two key strategies that allowed us to address these challenges in our datacollection: 1) Use of boundary objects to elicit participants narratives, and 2) the integration ofparticipatory urban planning methods.We show sample data sets to explain the ways our methods provided opportunities to learn morefrom students, to gain a comprehensive
. Engineers with an eye toward value creation understand stakeholder needs, learn from failure, and habitually work to provide benefits while understanding the consequences of their actions.” (Melton & Kline, n.d.) “Human value is defined as ‘What is important to people in their lives, with a focus on ethics and morality.’” (Friedman & Hendry, 2019)The instructors selected four of the stakeholders identified by the class as examples. On a newJamboard, students listed possible values specific to those selected stakeholders. The next step was to discuss how societal norms are the way values are implemented orexpressed in a particular society. They can vary based on many factors such as the culture of theparticular
Residential Academic Program, a living-learning community where students learned about and practice sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in en- gineering education include service-learning, sustainable engineering, social responsibility, ethics, and diversity. American c Society for Engineering Education, 2021 Intersectional Complexities of Race/Ethnicity and Gender in Engineering Students’ Professional Social Responsibility AttitudesAbstractThis research examined the professional social responsibility attitudes among engineeringstudents from different demographic groups based on intersectional categories
values, building codes, budgets, construction, design and architecture,repair, and ethics.3 Although Moll and colleagues did not explicitly connect these funds ofknowledge to engineering, many of these categories bear direct relevance to engineeringpractices, and for this reason, engineering may be an especially promising discipline forforegrounding Latinx students’ funds of knowledge.8 Under this assumption, we conducted aproject to better understand the engineering-related funds of knowledge of Latinx youth who hadbeen designated by their schools as ‘English learners.’9 Wilson et al. authored the firstpublication that stemmed from this work, which outlined funds of knowledge categories such asworkplaces; health of self and family
which provides funding for internsto travel to the UC Berkeley campus. Interns live in a traditional college residence hall for nineweeks and eat meals at a social dining facility. Additionally, they receive a $3,600 stipend aspayment for their work.The benefits of participating in the TTE program are well documented. A 2015 comparison ofpre- and post-program evaluation data found that participation resulted in enhanced confidenceto pursue further education opportunities and careers in science and engineering [5] [6]. A 2020follow-up study affirmed this finding, and additionally documented that participants were betterable to find scholarly resources, design ethical scientific experiments, conduct independentresearch, and analyze data [7
Paper ID #34894Cross-cultural User Interface Design in a Global Marketplace: BuildingAppreciation for Diversity, Equity, and InclusionMs. Irini Spyridakis, University of Washington Irini Spyridakis is an Assistant Teaching Professor in the Department of Human Centered Design & En- gineering at the University of Washington. Her research and teaching concern ethics and sustainable design in engineering, human computer interaction, smart cities, resource constrained communities, tech- nology for social good, and STEM outreach. She has close to 20 years of teaching experience and is an experienced UX researcher and designer
integrated into the units through the use of case studies, articles, anddiscussions. These curriculum units engage students in designing and building models ofneuroprosthetics, artificial neural networks, and sensory substitution devices. Curriculum unitsare available for middle school STEM courses, as well as for high school biology, physics,chemistry, and computer science.“Students were hooked by the combination of science and ethics. Using circuits, Arduinos/sensors, etc. in designing lessons always helped students feel like they were doing pertinent science. And hearing about current research kept them hooked. They knew the lessons were real and important.” ~RET teacher participantHighlight
, culture, economics, ethics, and policy on thedevelopment and implementation of technologies. The on-ground version is currently offered toengineering students in the NAE Grand Challenges Scholars Program (GCSP) at ASU.Developing this MOOC involved reimagining and redesigning the face-to-face active learning,discussion-based course to address the instructional challenges and opportunities presented by abroader, online audience. It offers numerous ways for students to actively explore the challengesand related, cutting-edge research efforts from an interdisciplinary perspective. This onlineversion includes interactive activities, discussions, expert talks, an open-ended project, creationof a professional digital portfolio, and a research assignment
engineering in 46 episodes of approximately 10 minuteseach. Over the course of the series, the origin of each branch of engineering was discussed,followed by discussion of core concepts of conservation, thermodynamics, fluid dynamics, heatand mass transfer, materials, statics, safety and ethics. The series then described applications ofthe different engineering fields, including robotics, genetic engineering, and signal processing, aswell as specific extensions of core engineering fields, such as transportation and geotechnicalengineering. The series concluded with an explanation of engineering design, careers inengineering, and the future problems to be solved. The authors of this paper were part of the collaboration in the development and
and Engineering Students. Part 1: Modelsand Challenges.” Journal of Engineering Education, Vol. 93, No. 4, 2004, pp. 269-277. Page 26.1740.136. R.M. Felder and R. Brent, “The Intellectual Development of Science and Engineering Students. Part 2: Teachingto Promote Growth.” Journal of Engineering Education, Vol. 93, No. 4, 2004, pp. 279-291.7. G. S. Stump, J.C. Hilpert, J. Husman, W.-T. Chung and W. Kim, “Collaborative Learning in EngineeringStudents: Gender and Achievement.” Journal of Engineering Education, Vol. 100, No. 3, 2011, pp. 475-497.8. N.Van Tyne and M. Brunhart-Lupo, “Ethics for the ‘Me’ Generation – How ‘Millennial
teamwork, diverse skills, o Optimization creativity and cooperation o Collaboration• Inviting divergent thinking and doing o Communication• Integrating interdisciplinary and creative o Ethical Considerations approaches o Critical Thinking• Exploring multiple solutions to problems NSTA. (2017) Best STEM Books. Science and Children, 54(6), 71-78.For More Information: Download the “Best STEM Books” article for free from the NSTAwebsite by going to http://www.nsta.org/publications/, and selecting the February 2017 issue ofScience and Children, Science Scope, or The
-edcertificationanddegreeoptions.CurrentlywearegettingapplicationsfromreservistsandguardsmenfromKabul,KosovoaswellasclosertohomelikeKosciusko,Mississippi.ConclusionsThe MSU effort is an outstanding example of a public private partnership. Through this effort,MSU has been able to assist reservists/guardsmen achieve mandated commercially recognizedcyber certifications. Cyber certifications can provide an important incentive/reward for reservepersonnel and improve retention.MSU has successfully offered 45 hour Certified Ethical Hacker (CEH) and Certified InformationSystem Security Professional (CISSP) review courses to National Guard members. Inpartnership with the NSA CAE Program, the MSU Center for Cyber Innovation and the MSUCollege of Business, MSU is offering Reserve Component Personnel the opportunity to completefor NSA-sponsored cyber
cross-disciplinary MSCE/MBA and MSCE/JD dual-degree programs. c American Society for Engineering Education, 2018 Comparison Between the New Bodies of Knowledge for the Civil Engineering Professional and the Civil Engineering TechnologistBackgroundCivil engineering relies on a strong formal knowledge and skills base acquired largely throughhigher education and experience. Central to the identity of civil engineering as a profession isthe need for such expert knowledge and skills, independence of thought and judgment, and anethos to serve the public good grounded in a sound code of ethics [1], [2]. The American Societyof Civil Engineers (ASCE) formally endorsed the
experts atchallenging students to develop excellent listening skills, cultural sensitivity, ethics, andempathy13,14. While engineering programs require students to take courses in the arts,humanities, and social sciences, students often compartmentalize these human-centric skills as“liberal arts” skills instead of weaving them into their technical expertise. There are numerousexamples of engineering programs or courses that have incorporated arts and humanities intodesign courses to encourage students to practice integrating human-centric skills with theirtechnical knowledge.15-17 A major challenge faced by this approach is that these courses are oftenseen as design courses and the “soft skills” offered by the arts and humanities faculty are just
Paper ID #11906Gendering Engineering Leadership: Aspirations vs. Shoulder TappingDr. Cindy Rottmann, University of Toronto, ILead Cindy Rottmann is a Research Associate at the Institute for Leadership Education in Engineering (ILead) at the University of Toronto. Her research interests include engineering leadership, engineering ethics education, critical theory, teacher leadership and social justice teacher unionism.Dr. Robin Sacks, University of Toronto Dr. Sacks is an Assistant Professor in the Faculty of Applied Science and Engineering at the University of Toronto teaching leadership and positive psychology at both the
administered on the assignedreadings and the homework assignments and students were provided with quick feedback. Onoccasion, clickers were employed to assess the understanding of concepts and create anenvironment to engage students and provide immediate feedback to both students andinstructors. Students worked problems in teams and each team submitted responses using aclicker. On other occasions, students were asked to take a position for or against ethically-oriented challenges confronted during benefit cost analyses and debate the issues. This activitynot only assisted the sensing and global learners by providing relevancy of the course material toreal-life issues, but also engaged students actively in thinking, analyzing, and
differentiatestraditional engineering majors (mechanical for this study) from interdisciplinary majors such asBioengineering or Biomedical engineering. A key finding was that “Students who score highly onknowing an engineer as a reason for selecting a major, wanting a good potential salary, designingand building things, and their perceptions of the present were likely to be traditional engineers.Students who want to prove themselves in the hardest possible major and benefit society are likelyto be in interdisciplinary majors.” In addition, “BIOE (bioengineering) females feel they have agreater understanding and ethical responsibility, and confidence in their choice of majorcompared to top enrollment (traditional engineering and other majors) females.” Rasoal, et
engineering students often dothe opposite: they focus on social (and sometimes SJ) dimensions but exclude technical ones.With the exception of Science and Technology Studies (STS) and occasionally ProfessionalCommunication and Engineering Ethics, most HSS disciplines rarely try to bridge the social andthe technical. Combined, this dichotomy of the engineering curriculum into the technical(engineering sciences) and the social (HSS), with perhaps some occasional (yet often superficial)sociotechnical integration in engineering design, constitutes a disservice to future engineers.Engineers-to-be need to practice thinking not just technically or socially, but sociotechnically.By practicing sociotechnical thinking, engineering students can improve their
Student Outcomes to Knowledge and SkillsTo help implement the new model, we hierarchically prioritize the ABET criteria to guide thedesign of direct measures 20. The hierarchical prioritization is shown in Figure 4. Criteria 3c ofthe ABET 2000 program outcomes calls for students to demonstrate an ability to “design asystem, component, or process to meet desired needs within realistic constraints such aseconomic, environmental, social, political, ethical, health and safety, manufacturability, andsustainability”. We view this student outcome as paramount to engineering practice andencompassing of the remaining student outcomes 21. In support of criteria 3c the remainingABET student outcomes call for a foundation of knowledge that facilitates
instrumentation lab experiment (Rhudy and Rossmann, 2015). • Our first year introduction to engineering course featuring a cornerstone design experience as well as the introduction of engineering as a sociotechnical enterprise. We teach engineering design thinking as founded on empathy & interchange with all stakeholders; we encourage students to become problem definers, not simply problem solvers (Cohen, Rossmann, and Sanford Bernhardt, 2014). • Engineering ethics infused throughout the engineering curricula in several majors; faculty members develop and include modules on ethics related to the course’s technical content. This work in one engineering department has been recognized
. Finally, students will explore the ethical implications of building artificially intelligent machines.This curriculum was co-designed by Benjamin Hart of Redmond High School and LarryBencivengo of Mercer Island High School and has been pilot-tested with their students overthree years. Lessons include: Introduction to Artificial Intelligence Introducing Arduinos Introducing Artificial Neural Networks Building Neural Networks with Arduino 1414 North East 42nd Street, Suite 204, Seattle, WA 98105-6271 Telephone: (206) 685-8915 URL: http://www.csne-erc.org