especially interested in innovative teaching and learning approaches in engineering. Page 26.1628.1 c American Society for Engineering Education, 2015 Understanding the Relationship between Living-Learning Communities and Self-Efficacy of Women in EngineeringAbstractRutgers University’s Douglass Residential College and School of Engineering developed apartnership to provide first-year women in engineering the opportunity to live together and studyengineering through the Douglass Engineering Living-Learning Community (DELLC). Thishigh-impact program, which provides first-year women enrolled in
communication is absolutely essential for the success of ITprojects; this is the professional reality that IT students must be prepared to face after graduation.Just as we teach students to prepare for malware or system failure, we should also teach students Page 26.272.18to prep for effective collaboration and communication with adjacent disciplines. The realproblem of miscommunication must be personalized so the student recognizes that “this will bean issue for me in my actual career.”As a tool suite, Termediator can be used to sensitize students to the semantic misunderstandingsthat will occur in their professional careers. For example, when a
Paper ID #12215A Student Design, Develop, Test & Deploy Project: Perseus II - Developmentof an Unmanned Marine System for an Underwater Unexploded OrdnanceMissionMr. Michael DeLorme, Stevens Institute of Technology (SES) Mr. Michael DeLorme Mr. DeLorme has 11 years of professional experience as a Research Asso- ciate/Engineer at Stevens; Davidson Laboratory, DHS National Center for Secure and Resilient Maritime Commerce (CSR), and Systems Engineering Research Center. Research concentrations include exper- imental marine hydrodynamics, unmanned marine vehicles, the implementation of hydro-acoustics for the detection of
further argued students who complete advanced mathematics and science courseswhile in high school are more academically prepared to pursue and succeed in STEM degreeprograms and professions2,7–12. Adelman8 explains that students at a minimum need to completethree and three-quarters worth of credits in mathematics in high school to successfully pursue abachelor’s degree. Further, students need to complete two and half credits in science, with twoof those having a laboratory portion8. Adelman8 recommends as mathematics courses calculus,pre-calculus, or trigonometry, and the science courses he recommends includes a combination ofbiology, chemistry, and physics. These are the same courses ANSEP recommends high schoolstudents to complete19. Adelman8
2006)12; and ParliamentaryLaw No. 562 (“PL 562” hereafter) which set out to merge the nation’s 150 specialized semi-professional colleges into a new system of eight regional “University Colleges.” This was donefor the purpose of simultaneously expanding educational access, controlling cost, and upholdingthe status of “medium cycle” bachelor’s degrees—generally semi-professional degrees in fieldssuch as teaching or nursing, but also more traditional, craft-oriented programs in engineering.While PL 562 affects primarily the Diplom (baccalaureate) institutions, it has had compleximplications for all engineering degree programs and institutions in Denmark.The tension between neoliberal policies and social welfare principles is also evident
, and informal interactions with students. This informal training also illuminated theparticular pressure points within the engineering school experience: the timing of homework andexams, the laboratory experiences, and the general rhythm of when academic stress runs at itshighest level. We correlate these experiences with some of the by-major results presented later. Page 26.1049.9Results and discussionMotivation for the data presented here. Our dataset is rich with respect to the students we havesupported over the years: 297 students who experienced a wide range of challenges. The datasetanalysis continues, and the results presented here are
, and design learning.John Alexander Mendoza-Garcia, Purdue University, West Lafayette / Pontificia Universidad Javeriana - Bo-gota, Colombia John Mendoza-Garcia is a Colombian Systems Engineer (Bachelor’s and Master’s degree) that currently is a Ph.D candidate in Engineering Education at Purdue University. His advisors are Dr. Monica E. Cardella and Dr. William C. Oakes. He is interested in understanding the development of systems thinking to support its assessment and teaching. Currently, he works for the first year engineering program at Purdue where he has taught the engineering introductory courses in design and algorithmic thinking, and has also developed content for these courses. He has an appointment with the