York: Collier/Macmillan4 Johnson, David W., Johnson, Roger T., and Smith, Karl A. (1991). Cooperative learning: Increasing college faculty instructional productivity. ASHE-ERIC Report on Higher Education. Washington, DC: The George Washington University.5 Johnson, D., Johnson, R.& Holubec, E. (1998). Cooperation in the classroom. Boston: Allyn and Bacon.6 Taconis, R., Ferguson-Hessler M.G.M., & Broekkamp, H. (2001). Teaching Science Problem Solving: An Overview of Experimental Work. Journal of Research in Science Teaching, 38(4), 442-468.7 She, H. (1999). Students’ knowledge construction in small groups in the seventh grade biology laboratory: Verbal communication and physical engagement. International Journal of
standardsexpected in each section of the report. Figure 1: Rubric Example The use of rubrics, as described above is similar to the use described by Powe and Moorheadin their 2006 article on the use of rubrics to grade laboratory reports7. Their combined use ofquantitative and qualitative methods in their rubrics helped standardize the grading of reports byteaching assistants who each had to grade reports for a common course. In the same manner, thefaculty advisors in the senior design course each had to grade the design report for theirindividual team, while submitting that grade for a common course. An additional benefit thatPowe and Moorhead identify is that the use of rubrics in this manner shortened the time to
institutionaland departmental issues as we move ahead with this powerful combination of technologies.MethodsVirtual Synchronous Classroom Hardware ConfigurationWe have two physical campus classrooms equipped for use as a VSC. One is a rather large(44’w x 30’d ) engineering laboratory (see appendix A). It contains 18 student workstations (forup to 36 students) equipped with a PC and electrical engineering lab equipment. The other is amore traditional classroom, but the student tables are surrounded by workstations at theperimeter of the room, thus this classroom is also larger than a typical classroom at ouruniversity.The classrooms also contain an instructor Podium station equipped with a PC (connected to avideo projector), a document camera and lab
and environmental responsibility, and lifelong learning. 2. Team Players - communicating, planning, coordinating, and managing projects and personnel with efficiency and effectiveness. 3. Problem solvers - learning new concepts, techniques, skills, and tools to aid in analyzing and designing electrical engineering systems. 4. Professionals - trained and competent in the fundamentals of engineering science, applied mathematics, laboratory practice, and principles of electrical engineering.”6 The ATU Engineering courses that specifically address ethics in their technical objectivesare ELEG/MCEG 1012 – Introduction to Engineering, MCEG 2023 – Engineering Materials,MCEG
Capstone Design course.These students have designed a WiFi system and biodigestors for Peruvian villages and pageturner prototype for World's Largest Book (for Groton Dunstable Regional Middle School).Students taking additional one-credit Community-based Engineering Design Projects courseshave designed a W/C transfer board and trash removers for the Lowell canals.Other CoursesService-learning projects have been introduced into other undergraduate courses.• Civil engineering students in the junior-level Environmental Engineering Laboratory have performed road salt and chemical analyses for the Town of Dunstable. In the next semester’s Water Resources Engineering course, the same students used hydrology to gain insight on chloride levels in
), 491Î50223. Laws, P., Sokoloff, D., and Thornton, R. (1999). Promoting Active Learning Using the Results of Physics Education Research. UniServe Science News, 13, Retrieved 4 September 2006 from http://science.uniserve.edu.au/newsletter/vol13/sokoloff.html24. Redish, E. F., Saul, J. M., and Steinberg, R. N. (1997). On the effectiveness of active-engagement microcomputer-based laboratories. American Journal of Physics, 65(1), 45Î5425. Cummings, K., Marx, J., Thornton, R., and Kuhl, D. (1999). Evaluating innovations in studio physics. American Journal of Physics, 67(supplement 1 to no. 7), S38ÎS4426. Hoellwarth, C., Moelter, M. J., and Knight, R. D. (2005). A direct comparison of conceptual learning and
eventinterviews, and (e) focus groups with team members. Team effectiveness is measured by: (a) ateam climate survey, (b) the evaluation of project products (a design report and a poster or anoral presentation followed by a defense), and (c) focus groups with first-year instructors.IntroductionIn 1996, the fourth-year Project Management in Practice (PMP) course was created as an electivein the Chemical Engineering program at the University Rovira i Virgili (Tarragona, Spain). Thecreation of this course responded to two needs although, actually, one of them was much morecompelling than the other. Four instructors teaching three first-year chemical engineering courses- Transport Phenomena, Fluid Mechanics, and Transport Phenomena Laboratory - wanted
Professor and Assistant Department Head of the Department of Engineering Education in the College of Engineering at Virginia Tech. He is also the Pete White Chair of Innovation in Engineering Education and the Director of the Frith Freshman Engineering Design Laboratory and the Faculty Advisor of the VT Mini-Baja Team. He is actively involved in bringing joy and adventure to the educational process and is the recipient of numerous University teaching awards. Page 13.1085.1© American Society for Engineering Education, 2008 Small Interventions, Big Impacts: How Modification of Delivery
that case, how can an instructor evaluate their own performance?When developing lesson plans, laboratories or other instructional materials, on what basis doesthe faculty decide to use one or the other approach? This objection to CQI appears to reduceteaching to a random activity in which anything goes and no method is better than any other forconveying information.It has also been claimed that a student learning outcomes-based CQI system is not needed sincethe ultimate function of an engineering education is employment upon graduation and themajority of the program’s graduates are getting jobs. This objection is reminiscent of thosevoiced by American automobile manufacturers when initially faced with potential competitionfrom overseas
subject from a uniquely pragmatic “top-down” engineering point of view as opposed to the laboratory “bottom-up” mentality of biochemists. Engineers, by nature, are pragmatic problem solvers. Engineering traditionally employs the fruits of scientific research to address and solve practical problems and create the technology that ultimately serves the needs of mankind… In the pursuit of these goals, engineers are often called upon to combine the findings of a number of diverse scientific disciplines in order to arrive at practical solutions and to achieve specific goals. This is the traditional application of engineering principles. But those same principles are eminently suitable for the study
selecting a group member (or members) to be tested and thus proxy for the group. • Sharing known skills- Students who possess certain knowledge or skills (examples: computer skills, laboratory skills, data reduction skills, presentation skills) should be willing to pass it on, and/or share it with their group members. • Collaborative Skills- Groups cannot function effectively if members do not have (be willing to learn) or use some needed social skills. These skills include leadership, decision making, trust building, and conflict management. • Monitoring Progress- Groups need to discuss amongst themselves whether they are achieving their set goals; they also need
for academic year 2007/2008. We also plan on pursuing funding toextend this to the ninth grade in the coming year. We would be happy to share materialdeveloped for this project as well as other information for schools wanting to implementa similar program. References1. “Science Notebook Essentials, A guide to Effective Notebook Components,” Michael Klentschy, Science and Children, Nov-Dec. 2005, pp.24-272. “Information and Inspiration for Innovative Teaching in K-12 Schools,” edutopia, The George Lucas Educational Foundation, http://www.edutopia.org/pbl3. “6 + 1 Trait ® Writing,” NW Regional Educational Laboratory, http://www.nwrel.org/assessment/4. “Terra Nova, The Second Edition (CAT/6
,” Proceedings of the 2006 American Society for Engineering Education Annual Conference, paper 2006-911, Chicago, IL, June 2006.2. J.-D. Yoder, B. K. Jaeger, and J. K. Estell, “One-Minute Engineer, Nth Generation: Expansion to a Small Private University,” Proceedings of the 2007 American Society for Engineering Education Annual Conference, paper 2007-599, Honolulu, HI, June 2007.3. J. Renaud, C. Squier, and S. C. Larsen, “Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course,” Journal of Chemical Education, vol. 83, no. 7 (July 2006), pp. 1029-1031.4. J. Renaud, personal communication, 11 September 2006.5. J. K. Estell and J. K. Hurtig, “Using Rubrics for the Assessment of Senior Design
, I will ask for help fromcolleagues, I am sure I can learn that when I need to”, replies the candidate.Clearly the second candidate would have a hard time convincing the accreditation panel, yetthe first candidate has happily admitted ignorance of critical issues which we now know to lieat the core of engineering practice.The challenge in considering engineering education changes is to provide a more appropriatebalance between social science and technical issues, an appropriate level of rigorousintellectual treatment at different levels of the course, and an appropriate balance betweendidactic and experiential learning in laboratories, role playing exercises, fieldwork, co-op(industrial placement) programs and team projects. The balance can
., Woods, D. R., Stice, J. E., Rugarcia, A., “The Future of Engineering Education II. Teaching Methods that Work,” Chemical Engineering Education, Vol. 34, 2000, pp. 26-39.6. Bonwell, C. C., and Eison, J. A., “Active Learning: Creating Excitement in the Classroom,” ASHEERIC Higher Education Report No. 1, George Washington University, Washington, DC, 1991.7. Hake, R., “Interactive-Engagement vs. Traditional Methods: A Six-Thousand-Student Survey of Mechanics Test Data for Introductory Physics Courses,” American Journal of Physics, Vol. 66, 1998, p. 64.8. Redish, E., Saul, J., Steinberg, R., “On the Effectiveness of Active-Engagement Microcomputer-Based Laboratories,” American Journal of Physics, Vol. 65, 1997, p. 45.9