Vikram Kapila is a Professor of Mechanical Engineering at NYU Tandon School of Engineering (NYU Tandon), where he directs a Mechatronics and Control Laboratory, a Research Experience for Teachers Site in Mechatronics and Entrepreneurship, a GK-12 Fellows project, and a DR K-12 research project, all funded by NSF. He has held visiting positions with the Air Force Research Laboratories in Dayton, OH. His research interests include K-12 STEM education, mechatronics, robotics, and control system technology. Under Research Experience for Teachers Site and GK-12 Fellows programs, funded by NSF, and the Central Brooklyn STEM Initiative (CBSI), funded by six philanthropic foundations, he has con- ducted significant K-12
Microde- vices Laboratory at the Jet Propulsion Laboratory. Dr. Fontecchio received his Ph.D. in Physics from Brown University in 2002. He has authored more than 75 peer-reviewed publications. c American Society for Engineering Education, 2018 A Project-Based Approach to Develop Engineering Design Process Skills Among High School Students (WIP)IntroductionImplementing engineering curriculum in high school improves student learning and achievementin science, technology and mathematics, increases awareness of the contributions of engineers tosociety, and promotes student pursuits of STEM careers [1]. In a 2009 report, the Committee onK-12 Engineering Education from the National
during group activities vary each week. In-classExplorations and case studies present students with challenging context-rich problems thatrequire teamwork, communication, and time management. The weekly laboratory exercise is anintegral part of our curriculum. Over the course of the semester, students conduct nine laboratoryexperiments that emphasize experimental design. For each one, a guided inquiry portionintroduces the experimental setting under standard conditions. Students then discuss the baselinedata and choose a question to investigate. An experimental design is developed, critiqued by aTA, adjustments are made, and the experiment is carried out. Because our classroom and lab areintegrated, the spirit of discovery carries over from labs
turbine that will rotate along the vertical axis to capturebi-directional flow patterns. With the financial support from the Department of Energy (DOE),and other support from the National Renewable Energy Laboratories, and the University ofMinnesota’s St. Anthony’s Falls Laboratory, Verdant Power was able to design and testcomposite blades (improving from the generation 4 model) as well as optimize the new rotordesign. Figure 6 illustrates the dimensional comparison between the generation 4 and generation5 turbines. Both generation 4 and 5 designs includes patented technologies. 14Figure 6: KHPS Turbine comparison.Ocean Renewable Power CompanyCorporate Leadership Ocean Renewable Power Company’s (ORPC) headquarters is based out of Portland
a formal studentsurvey for this and similar exercises, such as the one involving pump performance [7]. Thereflections presented here are based on instructor observations. These observations haveprovided useful guidance regarding how the exercise should be structured, and also places in theclassroom component of the course where more thorough instruction is needed in areas likeproblem solving techniques. A few key observations are as follows: 1. The students appear to become well engaged in the tasks related to taking measurements in the laboratory. They tend to show enthusiasm for distributing tasks among the team members and in coming up with plans for how they will execute the measurements. They appear to enjoy the data
University. During 2006-2010, he was Chair of the Department of Engineering and Aviation Sciences, Founder and Director of the Center for 3-D Visualization and Virtual Reality Applications, and Technical Director of the NASA funded MIST Space Vehicle Mission Planning Laboratory at the University of Maryland Eastern Shore. In 2010, he joined Eastern Michigan University as an Associate Dean in the College of Technology and currently is a Professor in the School of Engineer- ing Technology. He has an extensive experience in curriculum and laboratory design and development. Dr. Eydgahi has served as a member of the Board of Directors for Tau Alpha Pi, as a member of Advi- sory and Editorial boards for many International
and surrounding areas, where the first tubular digester was installed in 1999.Fabricio Camacho, a Ph.D. Candidate in Agricultural Engineering at the UGA-CR and GeneralManager and Associate Director of UGA-CR, expanded the use of digesters to several farms inthe region that previously did not treat their agricultural waste. Local farmers implemented ninetubular digesters to varying levels of success. UGA-CR is a valuable in-country partner becauseit hosts approximately 800 students a year, mostly from Costa Rica and the United States, forclassroom, laboratory, and field education and research.3 Agricultural Treatment System AnalyzedAn agricultural waste treatment system in Costa Rica was analyzed in a civil engineering courseat CSU-Chico
receipt of pledged financial supportguaranteeing the program’s solvency for at least the next four years.In addition to the scholarly work produced, helping both faculty and students professionally, theprogram also ensured greater utilization of laboratories during what was previously a relativelyslack time between the end of one academic year and the start of the next. By making availablethe skilled labor of highly talented students, the program also is producing a noticeable shift infaculty research areas toward topics that dovetail well with programs that emphasizeundergraduate education.The summer of 2019 marked the fourth year of the official program, and the sixth of any paidsummer research experience. Table 1 shows the growth of the number
from an internal grant opportunity by a group ofalumna and friends of WPI to support women in STEM [1]. In the very first iteration of theprogram, the goal was to enable high school women to engage in hands-on STEM research instate of the art research laboratories under the guidance of women graduate student role modelsfor a semester (10-12 weeks).By having the research projects supervised by graduate students, we did not have to burdenfaculty members (although they needed to approve their graduate student’s participation in theprogram) and the graduate students had opportunity to develop their skills in scoping a shortresearch project and mentoring younger students. Furthermore, to compensate the graduatestudents for their time and effort, a
veterans advocate and dedicated graduate school opportunities.To support an ongoing veteran recruitment and retention program, the University of NorthCarolina at Charlotte, Mechanical Engineering and Engineering Science Department developedan elective undergraduate course (ENGR 3999). This course was designed to use imagery andhands on, military based research laboratory experiences to engage veteran and non-veteranengineering undergraduate students. The class is available to all engineering students, butpredominately attended by Mechanical Engineering and Mechanical Engineering Technologystudents.Our curriculum development process was guided by the Integrative Approach for CurriculumDevelopment Framework [3]. This framework explains that
. Additionally, Mariam has taught both on-level and AP Physics I (formerly known as Pre-AP Physics) and played an integral role in writing the district physics curriculum consisting of rigorous labs, activities, and projects. Mariam fills the role of Alumni Representative on the UTeach STEM Educators Association (USEA) Board and was also elected Secretary-Treasurer. She is also currently pursuing a Ph.D. in STEM education at Texas Tech University.Mr. Ricky P. Greer, University of Houston Ricky Greer graduated from Tuskegee University with a bachelor’s in History. He went on to work at the University of Illinois at Urbana-Champaign as a community outreach specialist & unit operations laboratory manager, and through his
6 1 3.42 Modeling Laboratory Science 1 1 6 4 2.92 Collecting/Analyzi 3 6 3 4 ng Data Hypothesis 2 4 6 3.67 Development Problem Solving 3 6 3 4 Motivations for program experience Contributes 2 5 5 3.75 significantly to field of interest Desire to improve 2 4 5 1 3.58 my skills working with people from diverse backgrounds My academic
the Electrical and Computer Engineering De- partment at Valparaiso University since August of 2001. He teaches courses in senior design, computer architecture, digital signal processing, freshman topics, and circuits laboratories and is heavily involved in working with students in undergraduate research. Will is also a 2013 recipient of the Illinois-Indiana ASEE Section Outstanding Teacher Award and the 2014 ASEE National Outstanding Teaching Award. Upon coming to Valparaiso University, Will established the Scientific Visualization Laboratory (SVL), a facility dedicated to the use of Virtual Reality (VR) for undergraduate education. Working exclusively with undergraduate students, Will developed VR hardware and
experience through an appliedapproach (theory-to-practice) with sustainable transportation. The program parallels theengineering challenge of designing plug-in electric vehicles on a 1/10 scale. Students arechallenged to design efficient battery powered vehicles and solar charging station torecharge the vehicle’s batteries.Introduction Existing literature emphasizes the importance of hands-on learning. Nersessianbelieves hands-on experiences constitute the core of science learning (Ma and Nickerson,2006). Most recently, Bigler and Hanegan (2011) have found that allowing students touse equipment for DNA extraction and gel electrophoresis in a biotechnology classimproved students' content knowledge. The use of laboratories in enhancing courses
Ph.D. degree from the University of California at Berkeley. He has previously held industrial positions as a Researcher at the Hitachi America Semiconductor Research Laboratory (San Jose, California), and Compiler Developer at Kuck & Associates (Champaign, Illinois). He has held a visiting research position at the US Air Force Research Laboratory (Rome, New York). He is a Fellow of the IEEE. He has been a Nokia Distinguished Lecturer (Finland) and Fulbright Specialist (Austria and Germany). He has received the NSF Career Award (USA).Andrew Elby, University of Maryland, College Park Andrew Elby’s work focuses on student and teacher epistemologies and how they couple to other cognitive machinery and help to drive
otherinstitutional requirements, The Citadel was not able to hold a traditional 8-10 weekprogram. Thus, by offering options for students, they were allowed to participate in the SUREprogram and complete their military and other obligations. Based on the number of weeks whichstudents worked, they were provided a stipend that ranged from $2,000-$3,000 along withhousing and meals. The faculty working with the students received a modest stipend whichranged from $1,000-$1,500. In addition to working in their research laboratories, students wererequired to participate in meetings with other SURE students, as well as present their outcomesduring the first week of fall 2017 at The Citadel.Brief Description of Several Research ProjectsDuring summer 2017
section 2, were launched between 2009 and2014.2. Identifying the needs of graduate students and facultyThe 2009 assessment, performed by the Professional Enrichment Center, in collaboration withthe Office of Graduate Studies, surveyed 214 graduate students and organized various focusgroups with eight graduate program coordinators. The participants reported deficiencies in a)technical writing and communication skills, b) search strategies, and c) research integrity. Theassessments also exposed unsatisfactory and inadequate laboratory facilities for graduateresearch, as well as the lack of accommodations for collaborative learning. These findings agreewith the literature regarding support services for graduate students [3-6].In 2012, the Research
(1989), and the Ph.D. in electrical engineering (1993) from Texas A&M University. His areas of interest in research and education include product development, analog/RF electronics, instrumentation, and entrepreneurship.Dr. Michael Johnson, Texas A&M University Dr. Michael D. Johnson is an associate professor in the Department of Engineering Technology and In- dustrial Distribution at Texas A&M University. Prior to joining the faculty at Texas A&M, he was a senior product development engineer at the 3M Corporate Research Laboratory in St. Paul, Minnesota. He received his B.S. in mechanical engineering from Michigan State University and his S.M. and Ph.D. from the Massachusetts Institute of Technology
atCCSU program. A prototype helicopter simulator was developed and built by a faculty memberand his students at the host university through a National Aeronautics and Space Administration(NASA) research grant. Program participants, who are interested in operating a helicopter, aresupervised to "fly a helicopter" in a laboratory environment. Material testing instrument includesa series of demonstrations on steel and concrete mechanical property testing: a concretecompassion test, a steel impact test of, a steel fatigue test, and a steel tension test. Students aresplit into small groups and can operate testing apparatus to their comfort levels. Buildingexercise and competition is applied multiple times in the curriculum: a balsa wood bridge
research experiences were based on Lopatto’s criteria for “good research projects”:reasonable scope, feasible, generate data that students can present, not “cookbook” experiments,built-in difficulties, and multifaceted [8]. For the Spring 2018 semester, the CURE wasimplemented as four different manufacturing and service laboratory-type exercises and onegroup project.Preliminary results were collected in the form of pre- and post-surveys from the students. Duringthe third week of class, after which there were no drops or changes in enrollment, students wereinformed about their option to voluntarily participate in the data collection process. Two papersurveys were used: one in week 4 and one in week 15 of the semester. No reward of any kindwas
hybrid energy systems and investigation of the structure-property relationships in ferroelectric, dielectric and piezoelectric materials in the form of thin films and bulk composites for sensing/actuation and energy storage/harvesting applications. Dr. Cook-Chennault’s research group, the Hybrid Energy Systems and Materials Laboratory, conducts work towards understanding the fundamental mechanisms and processing parameters that allow for the control of physical material characteristics. In addition to this work, Dr. Cook-Chennault is the director of the Green Energy Undergraduate Program (GET UP) program which is funded through the National Science Foundation and the Student Learn and Achievent in Aerospace and
, research experiences with faculty and outside laboratories, professionaldevelopment activities, academic support, social integration, and mentoring.15 As adult learnersmake up an increasing portion of enrollment at universities, understanding how to increase theperformance and retention of this subpopulation is a significant issue facing institutions of highereducation. Research on student retention has started to address the unique characteristics andchallenges of adult learners, but there are still open questions about the effectiveness of programproposals.14, 16 There has been significant research related to retention of other minority groups,which may be instructive to future research and program proposals to address adult learnerretention.15
laboratory settings.The multi-disciplinary nature of ergonomics and its broad application in many domains (e.g.,transportation, manufacturing, aviation, medicine, product design, software development) meansthat potential course topics are numerous and therefore the instructor usually has much latitude indesigning course coverage and types of assignments.In practice, the broad range of topics within ergonomics can be included in a variety of IEundergraduate courses. Typical course names include Ergonomics, Human Factors, MethodsEngineering, Safety Engineering, Cognitive Engineering and Work Design, among others.6 In a2015 review of the 94 ABET accredited IE programs, Jane Fraser7 states that 90% of thoseprograms require work methods, human factors or
includes hands-on re-configurableelectronics laboratories, we will be able to provide students in these programs state-of-the-arttraining tools that match the expectations of industry.FPGAsFPGAs were created approximately 15 years ago by the Xilinx Corporation [3]. Xilinx is still thelargest manufacturer of this technology in the world [4]. FPGAs are not only programmedthrough a traditional schematic fashion, they are also programmed using HDL. HDL is used todescribe the behavior of the circuits that are being created. Although HDLs describe nearly alladvanced circuits, certain circuits can be automatically synthesized, meaning that HDL code canbe rendered from a computer directly into a working design. This is particularly true of“reconfigurable
Paper ID #16519Research and Instructional Strategies for Engineering RetentionDr. Claudia J Rawn, University of Tennessee, Knoxville Claudia Rawn is an Associate Professor in the Materials Science and Engineering Department at the University of Tennessee, Knoxville. She is also the Director of the Center for Materials Processing. Prior to joining the University of Tennessee full time she was a Senior Research Staff Member in the Materials Science and Technology Division at Oak Ridge National Laboratory and a Joint Faculty Member in the University of Tennessee’s Materials Science and Engineering Department. She received her
as possible. This paper is organized as follows. We initially provide an overview of the SoftwareFactory approach that is used with selected K-12 students. We then provide an overview of thecase study, followed by descriptions of the case study phases –selection, instruction andimplementation. We then describe the outreach component and the legal considerations whenworking with external partners. We conclude with outcomes, address threats to validity, andaddress future improvements to include additional K-12 students.The Software Factory The Software Factory is a pedagogical laboratory under the Software EngineeringLaboratory in the Computer Science (CS) Department at MSU, and is an educational facility forundergraduate
experience as a bridge construction project engineer for a construction contractor and as a research engineer for the Naval Civil Engineering Laboratory in Port Hueneme California. His teaching interests include construction equipment, cost estimating and construction process design. His research interests include highway and heavy construction methods, road maintenance methods, innovations in construction process administration, engineering education, hybrid learning and online learning. c American Society for Engineering Education, 2016 A Flipped Classroom Approach to Teaching Transportation EngineeringAbstract: The flipped classroom approach has gained increasing popularity in higher
based on her mentoring of students, especially women and underrepresented minority students, and her research in the areas of recruitment and retention. A SWE Fellow and ASEE Fellow, she is a frequent speaker on career opportunities and diversity in engineering.Dr. Armando A. Rodriguez, Arizona State University Prior to joining the ASU Electrical Engineering faculty in 1990, Dr. Armando A. Rodriguez worked at MIT, IBM, AT&T Bell Laboratories and Raytheon Missile Systems. He has also consulted for Eglin Air Force Base, Boeing Defense and Space Systems, Honeywell and NASA. He has published over 200 tech- nical papers in refereed journals and conference proceedings – over 60 with students. He has authored three
options, we decided to work withan external training organization (ETO), a corporation known world-wide as a leader increativity and innovation. Page 26.748.3A significant amount of discussion was undertaken to decide if the fieldtrip should be offered forcredit or non-credit. Upon a recommendation by the Dean of the College of Engineering, thecourse was offered for one credit. There were two reasons for this decision. First, students wererequired to participate in approximately twenty hours of lecture and laboratory activities over thefour-day trip. Second, offering the course for credit allowed the students’ participation to appearon their
, genuinely open-minded and interested in growing as a leader.Student-centered approach Page 26.906.10Engineering students face a demanding course load. In the design of this program, the directorswere sensitive to academic load, and as a result, created a concentration in engineeringleadership rather than a minor. Classes are all offered late Friday afternoons at a time whenthere no other engineering classes are scheduled, ensuring that accepted students will be able tocomplete the three-year program by graduation.In addition, the classroom and indeed, the entire program is treated as a laboratory, where allinvolved (participants and instructors alike