) the NSF Pathway Fellowsprogram, 2) work published in a 2016 ASEE Paper, 3) redefinition of the programgoals to include retention of underrepresented students and exposure to globalengagement and 4) the evolution & connection to the Penn State Clark ScholarsProgram 8U NITED S TATES F ULBRIGHT S CHOLAR 2015 AT U NIVERSIDADN ACIONAL DE INGENIERIA (UNI) – L IMA , P ERU• PILOT: NSF PATHWAY FELLOWS TRIP TO PERUPilot 2015: The research question in this project was: While conventional retentionprograms for underrepresented students have shown to achieve graduation ratesequal to or surpassing those of the majority male population over an extendedperiod, could
, where her thesis topic was Nanoparticle Diffusion in Polymer Networks. Her research interests include polymer physics, nanoparticle diffusion, and engineering and physics education.Lily Skau, Austin Peay State University Lily Skau is an undergraduate student at Austin Peay State University pursuing a bachelor’s degree in Engineering Physics and a minor in Mathematics and Sociology. She plans to graduate with her degree and minors in May of 2026 and enter the industry as a Mechanical Engineer.Dr. Bobette Dawn Bouton, Austin Peay State University Dr. Bobette Bouton is an associate professor at Austin Peay State University. Her current area of research is socio-emotional development in the domain of empathy. She is a
identify potential users, wesurveyed first-year undergraduate engineering students to capture their intention to participate inacademic makerspaces. This study reports on work done as part of a larger study that follows thepaths of first-year students at two academic institutions, tracking their participation andperceptions of makerspaces over four years. Quantitative data were collected from two onlinesurveys that were distributed at the beginning of the Fall 2022 semester and the end of theWinter/Spring 2023 semester. Each survey took approximately 10 minutes to complete andconsisted of a series of Likert-type and single-selection questions about theirattitudes/motivations toward makerspaces and psychosocial assessments of their
algorithms to the omission of important topics and key theoretical ideas.Langley’s findings provide a rationale for integrating discussions and ideas commonly in the realm of thehumanities and social sciences into AI course design for engineering education [31]. Their study found that“problem areas like qualitative reasoning, analogy, and creativity are ignored in favor of ones that are more easilyformalized” [31]. Promoting critical thinking and creativity through interdisciplinary approaches to problem-solvingcan set the basis for qualitative reasoning beyond quantitative analyses. It also allows for deeper reasoning on theinterplays between society and technology.These findings echo Mishra and Siy, who warned that “a Computer Science centric