AC 2009-2429: MULTI-INSTITUTION TEAM TEACHING (MITT): A NOVELAPPROACH TO HIGHLY SPECIALIZED GRADUATE EDUCATIONWilliam Heffner, Lehigh University Bill Heffner is the associate director of the International Materials Institute for Glass at Lehigh University where he has been since 2004. In this position he facilitates research exchanges promoting new functionality for glass and is developing an e-based glass learning curriculum for the glass research community as well as developing hands on experiments for the young science enthusiasts.Prior to this current role, for 25 years he was with AT&T Bell Laboratories and Agere Systems as a distinguished member of technical staff. Bill has taught
there were two 45-minute lectures chose to do their work during their assigned times.and two one-hour problem classes. These classes were heldin a large computer laboratory with 128 Macintosh™ Tuesday, 22 August 1995 11:35:03 AM LOGI 11:35:09 AM stack "Login to Dynamics 100"; card "loginCard"; goToProblemAfter 12090 11:35:19 AM stack "Kinematics Tests 1 v1"; card id 13074; 12100; openCard 11:35:39 AM stack "Kinematics Tests 1 v1"; card id 13074; 12100; studentAnswer = -16.52m/s^2 11:35:47 AM stack "Kinematics Tests 1 v1"; card id 13074; 12100; dialog: Your answer is incorrect. Try again for 2 marks, or view the help for 2 marks. (Help, *Try Again, ) 11:37:43
students have had a chance to listen to the instructor’s missionstatement. In our classes, we had all of our colleagues in learning providing their own mission statement forthe course.Self Evaluation Concept from William Glasser to Improve Teaching We are attempting to apply William Glassar’s (1986, 1993) recommended process for self evaluationwith the aim of producing quality work, in our case, quality teaching in the classroom and laboratory. Adeliberate process is important when improved quality, reduced cost, and reduced delivery time (QCD) areimportant. We think this is the situation in teaching. There is a high interest in improved quality, in fact thishas always been true in higher education. There is always a limit on cost
design experience is developed and integrated throughout the curriculum"1. A new curriculum, which provides greater flexibility to upper division students to meet their diverseinterests and which enhances the design experience for lower division students, was implemented in Fall,1995 as a result of that effort. A new, four-credit hour "Introduction to Mechanical Engineering" replaced aone-credit hour course in the old curriculum so substantial design and curriculum integration can beimplemented; this course was taught for the first time in Winter Quarter, 1996. Other lower-divisioncurriculum ehancements include three new courses: (a) a one-credit hour, sophomore-level laboratory courseintegrating materials, manufacturing and design was
real data, with the assistance of an instructor, one is able to illustrateexperimental error.Demonstrations and Experiments As mentioned above, an integral portion of the interactive approach is the presentationof hands-on experiences both in the classroom and in an accompanying laboratory. A summaryof the demonstrations and laboratories developed for this course is given below:First Semester1. Conservation of Energy 1996 ASEE Annual Conference Proceedings Page 1.276.5 A putty ball was raised above a table top, then released. It was explained that as the ball fell, the initial potential
mind.” We all learn best by experience. Teaching is not defined by the knowledge we give too the students,but rather teaching is that which stimulates students to gain knowledge. “The eye must do its own seeing, theear its own hearing, and the mind its own thinking, ..” states Dr. Gregory. Not an easy thing to do with a largeroom full of students, but still a worthy and necessary goal. The laboratory orientation of most engineeringcurricula serves well to aid in meeting this “law.” Rules for teachers, as prescribed by Dr. Gregory, include: (1) Excite the students’ interest in the subject.. attempt to awaken inquiry; (2) place yourself frequently in the position of a student among your students, andjoin in the search for some
Page 14.840.10example with the aid of photographs. In addition, some knowledge about laboratory andworkshop facilities in South Africa beforehand would have been useful in terms of preparationsrelated to fabrication and construction work. From a communication standpoint, more than onevideo conference was regarded as necessary and holding such a conference soon after theformation of the teams was recommended. It was also suggested that more regularcommunication between team members be prescribed either via email or through group phone orweb-based conferences.There was also a suggestion to build in more social time with the South African students, forexample inviting them to socialize at the bed and breakfast facility. With respect to
University, TAs have been employed to coverundergraduate lecture courses in addition to the laboratory classes typically taught by TAs, due Page 14.223.3to the departure of faculty and the hiring of new faculty with reduced teaching loads. To help theTAs, the author of this article taught a special topics course during the spring 2008 semesterbased on the ExCEEd teaching model. The purpose of the course was to introduce and exposeTAs to the ExCEEd teaching model and assess teaching effectiveness. Topics of the ExCEEdmodel were presented at weekly class meetings. TAs were observed at the beginning and endingof the semester to assess each TAs
recruitment and retention efforts of the department and program.Besides the technical skills to be acquired, one of the purposes of these courses is viewedto be enticing the student in the field of study, motivating them to learn more, and in turnstay with the program. In a continuously demographically changing classroom,instructors face the challenge of adjusting the content of the course and the projects suchthat both the lecture and laboratory assignments are suitable, interesting, and useful forall types of students; these students include traditional recent high-school graduatestudents, transfer students with some prior college course credit, professional students,and other mature students.In the classical style of teaching this course, it has
Enhancing Interdisciplinary Interactions in the College of Engineering and Natural SciencesIntroduction and Project GoalsA team of faculty members in the College of Engineering and Natural Sciences at The Universityof Tulsa (TU) began work in July 2004 on a National Science Foundation (NSF)-funded Course,Curriculum, and Laboratory Improvement (CCLI) Project (Proposal # 0410653). This two-yearproject was based on the use of Interdisciplinary Lively Application Projects (ILAPs)1 as avehicle for strengthening connections among science, engineering, and mathematicsdepartments2. The concept of ILAPs originated from a consortium of 12 schools led by theUnited States Military Academy (USMA) with an NSF funded project, Project
an effective and efficient learninggroup of students.In a paper he presented at the 2004 ASME Heat Transfer/Fluids Engineering SummerConference at Westin Charlotte & Convention Center, Charlotte, North Carolina (July11-15, 2004) the author raised five questions : 1. What should be counted as appropriate goals in an undergraduate engineering course that has a significant laboratory component ? 2. Are the teaching practices utilized by the instructor in this course providing reasonably acceptable paths toward accomplishing the specified learning goals ? 3. What do students actually accomplish in the course and the laboratory exercises and how does the instructor’s teaching methodologies
leadingcorporations and National Laboratories, and as entrepreneurs. In Hispanic BusinessMagazine recently, UTEP was named Number One in the Top Ten Engineering Schoolsfor Hispanics [1]. Clearly, UTEP produces a large number of high quality baccalaureategraduates.1 This material is based upon work supported by the National Science Foundation under Grant No. DUE-0411320. Any opinions, findings, and conclusions or recommendations expressed in this material are thoseof the author and do not necessarily reflect the views of the National Science Foundation. Support was alsofrom the PACE program (www.PACEpartners.org) and the author gratefully acknowledges their support
, and enhance communication betweenthe instructor and students.With the reform effort, students developed professional non-technical and technical skillssimultaneously in an integrated mode. The concept for this approach was based on thenotion that technical information and new knowledge acquisition can be achieved in bothformal and informal modes [ 3] . Formal learning experiences occur in lectures delivered by theinstructor while informal learning is obtained through the self-directed and team-basedprojects with appropriate instruction. Professional skills including communication skills,teamwork skills and lifelong learning skills were integrated with up-to-date technical skillsdevelopment in laboratory-rich and hands-on projects.The course
publication, submitting grant proposals, participating in professional societies,and working on departmental and university committees.Teaching is considered the primary activity for faculty members and carries the highest weight(65%) toward the tenure decision. As a result a great deal of effort is channeled each year intoevery aspect related to teaching courses. Lectures are updated to improve class discussions andunderstanding; laboratory exercises are restructured to provide the right emphasis; homeworkassignments are refreshed; and projects are rejuvenated to increase the application of the subjectmatter. All of this effort is aimed at increasing the students’ comprehension of the material beingstudied. Regrettably this process creates a
Laboratory at MIT. She received her Ph.D. in Sociology from Boston University. Her research interests include the assessment of innovations in pedagogy and the use of educational technology.Rafael Bras, Massachusetts Institute of Technology RAFAEL L. BRAS is Edward Abdun Nur Professor of Civil and Environmental Engineering and of Earth Atmospheric and Planetary Sciences at MIT. Dr.Bras' undergraduate and graduate degrees are from MIT, where he joined the Faculty in 1976. He is a former Department Head and Chair of the Faculty. His research interests are in hydrology. His educational interests revolve around Terrascope, the program described in this paper.Kip Hodges, Massachusetts Institute of
, construction methods, etc.• Develop a list of questions for the student team to use to initiate communication with the clientsince communication might not be as easy as with a domestic client. Therefore, the team will beable to maximize the productivity of their initial communication. Page 11.976.10Site Visit• Begin planning the visit right away. Ensure that passports are in order. Determine whethervisas are required. Research local customs and courtesies.• Plan the amount of soil needed to bring back into the US for laboratory testing. Then contactthe USDA at least 2 months in advance to determine the required permits and procedures tobring the
identified as key factors, and each is discussed in detail. Toprovide a concrete context for the discussion, highlights from past projects are provided.The UND/Imation partnership was initiated when select Imation personnel were invited tocampus in 2001 by the Dean of the School of Engineering & Mines, Dr. John Watson. TheImation representatives toured the university engineering laboratories and spoke with anumber of engineering faculty to determine mutual interests. The visit served as a chance forboth parties to discuss their activities and capabilities with the intent of identifying synergisticactivities. The visit resulted in identifying two areas of mutual interest; one in ElectricalEngineering and one in Mechanical Engineering. The
It became increasinglyapparent to the Division that the focus of the co-op program should be upon those areas that arecritical from the standpoint of both academia and industry.The faculty also recognized that, unlike a laboratory that is under the control of the facultymember, our students’ learning environment is under the control of the co-op employer. Whilethe goal was to develop a curriculum that provided all students with common learning outcomesthat they would be developing through participation in the Professional Practice Program, facultymembers were well aware of the time constraints students would face. The curriculum mustenhance the learning that is taking place naturally on the job and should not conflict with, or takepriority
include forced response and steady flow analysis of turbomachinery and hypervelocity gouging on high speed test tracks.Brian Self, U.S. Air Force Academy Brian Self is an Associate Professor of Engineering Mechanics at the U.S. Air Force Academy. He received his B.S. and M.S. in Engineering Mechanics from Virginia Tech and his Ph.D. in Bioengineering at the University of Utah. He has four years of experience with the Air Force Research Laboratory and is in his seventh year of teaching in the Department of Engineering Mechanics. Areas of research include impact injury mechanisms, sports biomechanics, aerospace physiology, and engineering pedagogy
researchers have focused oncreating new instructional materials to address the statistical needs of College of Business (COB)students. At the same time, educational innovators have been emphasizing how critical it is forthe COB students to be exposed to business applications when learning to master the corematerial. Textbook writers have been reasonably successful in addressing either of theserequirements; i.e., to prepare the students on statistics fundamentals or to expose them tobusiness applications. However, instructional materials that integrate both requirements are notreadily available. We worked with the Laboratory for Innovative Technology and EngineeringEducation (LITEE), Auburn University, that has developed award-winning
organisms flourish together. This ideology is possiblethrough the creation of technical solutions by engineering programs which have incorporated thiscurrent issue within its curricula. By representing both industrial and environmental ideals,classroom curricula can address various obstacles to bridge these polar entities. Students canthen develop creative methods in the laboratory with special research projects. Laboratoryresearch reinforces learning through hands-on application of classroom principles, while alsoproviding a significant atmosphere for technical collaboration with industrial contacts.A strengthened infrastructure of international environmental regulation for industry is necessaryfor maintaining a healthy balance in the relationship
include plans to useexperiments or case studies from your research in your lesson plans, as well as the use ofinterested students from your courses as undergraduate research assistants. NSFencourages the use of undergraduates in research, and offers supplemental funding to theCAREER grant to support this activity through the Research Experiences forUndergraduates (REU) program.8 NSF also encourages visits to foreign researchfacilities, and collaboration with foreign institutions in research and educationalactivities. In addition, partnerships with industry, national laboratories, and K-12 schoolsare considered good examples of activities that can integrate research and education. Asyou think about integrating research and education, it can be
serve as sources of new technologies that might be commercialized by incubatorclient firms and other regional start-ups. Universities can also provide other valuable servicesand unique resources to both the incubator, its clients and other regional start-ups such as (1)Faculty / technologist managerial or technical consulting on a pro bono or fee basis (2) Studentinterns and employees (3) Access to technical labs, facilities and equipment (4) Access todatabases and researchers (5) Access to research and development financing through programssuch as SBIR – federal grant funding is greatly enhanced when incubator clients submit a jointproposal with a university or federal laboratory (6) Additional services and resources includingpatent knowledge
have shownthat universities serve as sources of new technologies that might be commercialized by incubatorclient firms and other regional start-ups. Universities can also provide other valuable servicesand unique resources to both the incubator, its clients and other regional start-ups such as (1)Faculty / technologist managerial or technical consulting on a pro bono or fee basis (2) Studentinterns and employees (3) Access to technical labs, facilities and equipment (4) Access todatabases and researchers (5) Access to research and development financing through programssuch as SBIR – federal grant funding is greatly enhanced when incubator clients submit a jointproposal with a university or federal laboratory (6) Additional services and
during group activities vary each week. In-classExplorations and case studies present students with challenging context-rich problems thatrequire teamwork, communication, and time management. The weekly laboratory exercise is anintegral part of our curriculum. Over the course of the semester, students conduct nine laboratoryexperiments that emphasize experimental design. For each one, a guided inquiry portionintroduces the experimental setting under standard conditions. Students then discuss the baselinedata and choose a question to investigate. An experimental design is developed, critiqued by aTA, adjustments are made, and the experiment is carried out. Because our classroom and lab areintegrated, the spirit of discovery carries over from labs
turbine that will rotate along the vertical axis to capturebi-directional flow patterns. With the financial support from the Department of Energy (DOE),and other support from the National Renewable Energy Laboratories, and the University ofMinnesota’s St. Anthony’s Falls Laboratory, Verdant Power was able to design and testcomposite blades (improving from the generation 4 model) as well as optimize the new rotordesign. Figure 6 illustrates the dimensional comparison between the generation 4 and generation5 turbines. Both generation 4 and 5 designs includes patented technologies. 14Figure 6: KHPS Turbine comparison.Ocean Renewable Power CompanyCorporate Leadership Ocean Renewable Power Company’s (ORPC) headquarters is based out of Portland
,” International Journal of Engineering Education, vol. 32, no. 5, pp. 2134–2150, 2016.[10] D. E. Bolanakis, E. Glavas, and G. A. Evangelakis, “An Integrated Microcontroller-based Tutoring System for a Computer Architecture Laboratory Course,” International Journal of Engineering Education, vol. 23, no. 4, p. 785, 2007.[11] R. T. Castles, T. Zephirin, V. K. Lohani, and P. Kachroo, “Design and implementation of a mechatronics learning module in a large first-semester engineering course,” Education, IEEE Transactions on, vol. 53, no. 3, pp. 445–454, 2010.[12] W. K. Durfee, “Mechatronics for the masses: a hands-on project for a large, introductory design class,” International Journal of Engineering Education, vol. 19, no. 4, pp. 593
interactions Ability to customize 3D virtual environments (such as lecture halls, laboratory spaces, virtual instrumentation, etc.) based on the course topics Ability to create and import relevant 3D models into the virtual space Programmatic control of 3D objects to develop interactive simulations (with or without a physics engine)The virtual world technology in this study supported many activities, including special topicslectures and demonstrations on robotics, virtual discussion sessions involving 3D models ofmicrocontrollers, virtual office hours and mentoring, and a virtual poster session. The virtualposter session allowed teams of students to present work that was shared in a 3D environmentwith other students in
Challengecompetency, hands on project/research, involves completion of some experience in a researchsetting related to the scholar’s challenge. This could include laboratory work, collection of dataor surveys, investigations into potential solutions for their Grand Challenge, etc. The secondcompetency is interdisciplinary curriculum, wherein the student is encouraged to take coursesoutside of their specific discipline. Entrepreneurship, the third competency, aims to developstudent’s skills in working with investors, business plans, and market analyses that are just ascrucial as the engineering technical solution. The GCSP Global dimension, the fourthcompetency, aims to develop students’ global perspectives and assist in their understanding ofthe global and
, electrical insulation parts, and rubber gloves12,13.Hot dipping activity resource requirements are vinyl plastisol, metal mandrel molds, and anappropriate oven. A convection countertop oven can be used to instead of a laboratory oven if itsinternal height is sufficient to allow mandrels to hang as they heat, nominally at least 6 inches(150 mm)14. The required heating temperature for vinyl plastisol is 400 ᵒF so the oven should beable to reach a temperature of at least 450 ᵒF. The vinyl plastisol can be dyed to different colorsby adding colorant if desired.The hot dip process must be completed in a well-ventilated area. To prepare for the hot dipprocess, mandrels preheat in the oven while students stir the vinyl plastisol dispersion thoroughlyto