Calculus Females (Actual and Normal) 60 Algebra Males 50 Algebra Females 40 Calculus-Males m = 15.8 s = 4.8 30 Calculus-Females
%), withdisciplines having an average of 26.3% women undergraduates at the schools examined.Table 1: Summary of schools included in analysis. All ASEE data (enrollment, disciplinecategories) from 2016 except for New Mexico Tech (2015) (ASEE 2015, 2016). Reg = Region(C = Central, E = Eastern, NE = Northeastern, S = Southern, SC = South Central, SW =Southwestern, MW = Midwestern, W = Western); No. ASEE Disc Cat = number of disciplinecategories (including “Other Engineering”) listed in the profile; FT = Full-time, PT = Part-time,UG = undergraduate, Fem = Female. No. ASEE Pub/ % FT % PTSchool
, MATH 1348 Analytical Geometry,Year-2 PHYS 2425/2426 Physics I/II, CHEM 1311 Inorganic Chemistry I MATH 1316 Trigonometry, MATH 1348 Analytical Geometry, MATH 3320Year-3 Differential Equations, PHYS 2425 Physics I, CHEM 1311 Inorganic Chemistry I Identify Concept(s) to be Develop Draft Module Identify Bottleneck Covered Each Week including Sample Problems/ Concepts According to Teaching Examples and Solutions (Course Instructor) Schedule
(PCAST). “Transformation and opportunity: The future of the U. S. research enterprise,” Washington, DC: PCAST, 2012.[2] M. W. Ohland, and E. R. Crockett. “Creating a catalog and meta-analysis of freshman programs for engineering students: Part 1: Summer bridge programs,” in Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition. Montreal, Canada: ASEE, June 16-19, 2002.[3] B. P. An. “The Impact of Dual Enrollment on College Degree Attainment Do Low-SES Students Benefit?” Educational Evaluation and Policy Analysis, 0162373712461933, 2012.[4] A. Gamoran, A. C. Porter, J. Smithson, and P. A. White. “Upgrading high school mathematics instruction
affords us thechance to change our curriculum, making improvements based on teacher and student feedback;we will continue to do so, analyzing forthcoming results to gauge the success of the curriculumin changing student perceptions. The continuation of the project presents further opportunities toimmerse ourselves in student design experiences and uncover features that are influential forchanging student perceptions about engineering.AcknowledgementsThis materials is based upon work supported by the National Science Foundation under GrantNo. 1513175-DRL.References1. McGrath, E., Sayres, J., Lowes, S., & Lin, P. (2008, October). Underwater lego robotics as the vehicle to engage students in STEM: The build it project's first year of
program, 40% of the population is comprised of women, a stark contrast to thesmall percentage of women represented in more traditional engineering programs. We felt thatinterviewing a proportionally larger number of women in a context different than traditionalengineering programs might provide insight into their construction, understanding, and valuingof knowledge(s). We acknowledge that this might risk having the male student having tokenrepresentation, and a follow-up study and analysis plans to address this gender imbalance.Data Collection: Participants were recruited from the AME capstone course and were chosenbecause the course is only taken by students approaching graduation; we felt that these studentshad ample experience with the program
). at 4. Morozov, E. Making it. The New Yorker (2014). at 5. Foster, T. Welcome to the maker-industrial revolution. Popular Science (2015). at 6. Chachra, D. Why I am not a maker. The Atlantic (2015). at 7. Moldofsky, K. The maker mom. (2015). at 8. Hatch, M. The maker manifesto. McGraw Hill Education (2014). at 9. Martinez, S. & Stager, G. Invent to learn: Making, tinkering, and engineering in the classroom. (Constructing modern knowledge press, 2013).10. Make. Maker Pro. (2014).11. Makerspace North. Makerspace north. (2014). at 12. The British Council. Maker library network. at 13. Chaihuo Maker Space. Shenzhen Maker Faire. (2015). at 14. Seeed. First open hardware gathering in
expressed herein are solely the authors’.REFERENCES CITED 1 Lighthall, A. (2012). Ten things you should know about today’s student veteran. Thought & Action: The NEA Higher Education Journal, 80-89. Available at http://www.nea.org/home/53407.htm2 Lord, S., Kramer, K., Olson, R., Karsada, M., Hayhurst, D., Rajala, S., … & Soldan, D. (2011). Special Session – Attracting and supporting military veterans to engineering programs. Proceedings of the 2011 Frontiers in Education Conference, Rapid City, SD, October.3 U.S. Department of Veterans Affairs. (2012). Annual benefits report fiscal year 2012. Available at
. Page 26.556.1 c American Society for Engineering Education, 2015 DNA Extraction Using Engineering Design: A STEM Integration Unit (Curriculum Exchange) Target Grade Level: 6-8 En gr TEA MSE n gin eerin g t o Tran sform t h e E d ucat ion of An aly sis, Measuremen t , & Scien ce Authors and Contact: Corey A. Mathis Tamara J. Moore S. Selcen Guzey Purdue University Purdue University Purdue University mathisc@purdue.edu
questionnaire.Self-Rating of Engineering Leadership Skills. The second part of the survey included a skillsquestionnaire that was developed based on the survey instrument created by Ahn et al.3. Ahnet al.’s survey contained 45 items specifically designed to measure outcomes in engineeringundergraduate students related to leadership, adaptability to change, and synthesis abilities3.Twenty of these items, principally the ones directly related to leadership, were chosen for theskills questionnaire (e.g. I independently initiate new individual or team projects and Imanage and organize my time efficiently). The participants were asked to rank the extent towhich they embodied each statement on a scale of one to four (1=rarely, 2=sometimes,3=frequently and 4
). Page 26.1430.4 Table 1 – Coding scheme description and examples.Domain Category Description Example Refers to writing or presentation of the design “There are grammatical error[s] Communication work. throughout the paper.” Explicitly refers to one of the design concepts Design Concepts taught in class by using terminology taught in “The goal could [be] more specific.” class.Substance Refers
for the actors to develop their own contextthrough improvisation.In TPC, Open Scene is used differently. Students are paired up (with an occasional trio, ifnecessary) and given a generic set of instructions explaining that they will perform a ‘scene’ withtheir partner(s) for their peers in approximately ten minutes. These instructions also include somereminders of things to consider that may help them communicate their scene, including tone,volume, body language, and use of relational space (all discussed previously in course content).Students are additionally encouraged to use readily available props as they deem appropriate.Each group is instructed to keep their scene a secret from other groups as they prepare. Then,each group is given
from this study can give contextualized voice to student-led efforts in retention [17].References[1] M. S. Ross and S. McGrade, “An exploration into the impacts of the National Society of Black Engineers (NSBE) on student persistence,” in ASEE 123rd Annual Conference & Exposition, 2016.[2] D. Dickerson and T. Zephirin, “Exploring the association of a cultural engineering student organization chapter with student success,” in Proceedings of ASEE 124th Annual Conference & Exposition, 2017.[3] W. C. Lee and H. M. Matusovich, “A model of co-curricular support for undergraduate engineering students,” J. Eng. Educ., vol. 105, no. 3, pp. 406–430, 2016.[4] W. C. Lee, A. Godwin, and A. L. H. Nave
, “Teacher and Student Attitudes Toward Teacher Feedback,” RELC J., vol. 38, no. 1, pp. 38–52, 2007.[4] E. Ekholm, S. Zumbrunn, and S. Conklin, “The relation of college student self-efficacy toward writing and writing self-regulation aptitude: writing feedback perceptions as a mediating variable,” Teach. High. Educ., vol. 20, no. 2, pp. 197–207, 2015.[5] R. Yoshida, “Teachers’ choice and learners’ preference of corrective feedback types,” Lang. Aware., vol. 17, no. 1, pp. 78–93, 2008.[6] O. H. A. Mahfoodh and A. Pandian, “A Qualitative Case Study of EFL Students’ Affective Reactions to and Perceptions of Their Teachers’ Written Feedback,” English Lang. Teach., vol. 4, no. 3, pp. 14–25, 2011.[7] T. Ryan and M
. Guskey, and L. A. Jung, “Response-to-intervention and mastery learning: tracing roots and seekingcommon ground,” The Clearing House, vol. 84, no. 6, pp. 249-255, 2011[3] – M. W. Bonner, “Grading rigor in counselor education: a specifications grading framework,” EducationalResearch Quarterly, vol. 39, no. 4, pp 21-42, 2016[4] – G. G. Shaker, and S. K. Nathan, “Teaching about celebrity and philanthropy: a case study of backward coursedesign,” The Journal of Nonprofit Education and Leadership, vol. 8, nr. 4, pp 403-421, 2018[5] – J. Ring, “Specifications Grading in the Flipped Organic Classroom,” Journal of Chemical Education, vol. 94,no. 12, pp 2005-2006, 2017[6] – L. Pope, H. B. Parker, and S. Ultsch, “Assessment of specifications grading in an
efforts to create inclusive classrooms and programming.Dr. Melissa M. Bilec, University of Pittsburgh Dr. Bilec is an associate professor in the Swanson School of Engineeringˆa C™s Department of Civil and Environmental Engineering. Dr. Bilecˆa C™s research program focuses on the built environment, life cycle assessment, sustainable healthcare, and energy im ©American Society for Engineering Education, 2024 A Collaborative Virtual Air Quality Learning Experience with Kakenya’s Dream (Resource Exchange, Diversity) The curriculum we developed for this collaborative project focused on introducing thestudents and instructors to the importance of air quality (AQ), its impacts on
InformationPseudonym Racial Gender Disability(s) Engineering Major Year-in-School International Identity Identity Student (Y/N)Susan White Woman Multiple physical disabilities Mechanical Third-year NLucy Black Woman Cognitive, learning Civil Third-year YAria White Woman Cognitive Industrial Ph.D. NClaire White Woman Cognitive, learning, physical Computer Science Fourth-year N Co-researcher Recruitment and Data Collection This
PIECES: AN INFORMAL FRAMEWORK TO ENCOURAGE MULTIFACETED ENGAGEMENT a b c d a. Aerospace Engineering Department. CU Boulder J. Rush Leeker, L. MacDonald, S. Roudbari, L. Ruane, M. Palomar b. Global Engineering, CU Boulder c. Architecture, Sustainable Planning &
Education, 2024 PALAR IN PIECES: AN INFORMAL FRAMEWORK TO ENCOURAGE MULTIFACETED ENGAGEMENT J. Rush Leeker, L. MacDonald, S. Roudbari, L. Ruane, M. Palomar INTRODUCTION PROJECT DESCRIPTION 2 Action Learning (AL): METHODOLOGY Centers on a 'learning by
to help practitioners navigate their careers, help practitioners betterunderstand their students and colleagues, and help administrators/mentors develop an asset-basedand systemic-based understanding of neurodivergence.References[1] H. B. Rosqvist, N. Chown, and A. Stenning, Neurodiversity Studies: A New Critical Paradigm. Taylor & Francis Group, 2020.[2] A. Cuellar, B. Webster, S. Solanki, C. Spence, and M. A. Tsugawa, “Examination of Ableist Educational Systems and Structures that Limit Access to Engineering Education through Narratives,” presented at the 2022 ASEE Annual Conference & Exposition, American Society for Engineering Education, 2022.[3] T. Sorg, “Where are We, and Where to Next? ‘Neurodiversity’ in
Significance of Scholarship Programs in STEMIntroductionIn this Work-in-Progress paper, we share our ongoing work with an NSF Scholarships in STEM(S-STEM) program related to an iteration of analysis that looked across specific aspects in amore summative manner than our typical analyses during the five years of the project that aremore formative. As the project will soon enter an extension into a sixth year to use existingscholarship funds, we took this opportunity to begin to reflect on overarching goals toward thedevelopment and submission of a new S-STEM proposal to continue this work. The StudentPathways in Engineering and Computing for Transfers (SPECTRA) program in the ClemsonUniversity College of Computing, Engineering
Ancestry, Technical Talent, and Learning Process. While AI-based learning showspromise for certain student groups, peer and internet-based reviews also play a vital role infostering engagement and knowledge retention. To this end, students should be wary of entirelyrelying on AI, as backgrounds, learning preferences, and deep analysis may be hurdles instead ofolder, standard approaches. Future research should explore the interactions between thesevariables in greater detail, perhaps using larger datasets and different learning environments.References[1] Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021). ai literacy: definition,teaching, evaluation and ethical issues. Proceedings of the Association for Information Scienceand
identified by the other model. The GPT-4 model tended to identifymore basic relationships, while manual analysis identified more nuanced relationships.Our results do not currently support using GPT-4 to automatically generate graphicalrepresentations of faculty’s mental models of assessments. However, using a human-in-the-loopprocess could help offset GPT-4’s limitations. In this paper, we will discuss plans for our futurework to improve upon GPT-4’s current performance.IntroductionAssessments are found in every engineering classroom and are an important part of our educationsystem [1]-[3]. Assessments play many different roles, including understanding studentimprovements in learning [4], acting as a tool to assist students with learning [5], [6
Number [EEC-1849430 & EEC-2120746]. Any opinions, findings andconclusions, or recommendations expressed in this material are those of the author(s) and do notnecessarily reflect those of the NSF. The authors acknowledge the support of the entire e4usaproject team.References[1] “The Standards | Next Generation Science Standards.” Accessed: Feb. 07, 2024. [Online]. Available: https://www.nextgenscience.org/standards[2] “Employment in STEM occupations : U.S. Bureau of Labor Statistics.” Accessed: Feb. 07, 2024. [Online]. Available: https://www.bls.gov/emp/tables/stem-employment.htm[3] “Motivational factors predicting STEM and engineering career intentions for high school students | IEEE Conference Publication | IEEE Xplore
each type, and strategies forunderstanding team members’ preferences and tailoring communication and collaborationstrategies. This model offers users insights into their personality preferences and psychologicaltype and incorporates an additional letter to accommodate five scales instead of four [12]. Themodel evaluates five personality dimensions, each representing opposite ends of a spectrum: (1)Energy: the interaction with the surrounding environment (Extraverted(E)/Introverted(I)); (2)Mind: the perception and processing of the world (Intuitive(N)/Observant(S)); (3) The processof making decisions and reacting to emotions (Thinking(T)/Feeling(F)); (4) Tactics: theapproach to work, planning, and decision-making (Judging(J)/Prospecting(P
(DE-NA0004115) , MSIPP-I AM EMPOWERED funded by the Department of Energy (DE-NA0004004), NSF-RISEfunded by the National Science Foundation (1646897), CREST Center funded by the National Science Foundation (1735968),RETREAT: Retaining Engineers through Research Entrepreneurship and Advanced Materials Training funded by the NationalScience Foundation (1950500), DREAM: Diversity in Research and Engineering of Advanced Materials Training. Funded by AirForce Research Laboratory (FA8651-18-1-0003) and Catalyst Project: A Two-Semester Driven Conceptualization Training ofManufacturing Intelligence in Materials Engineering (MIME) - A Froshmore FUTURES Program (2011853).References[1] M. L. Espino, S. L. Rodriguez, and B. D. Le, "A Systematic
high school female students andcounselors.Furthermore, the study underscores the importance of addressing gender imbalance in CEMprograms and offers actionable insights to promote gender diversity and inclusion in theconstruction industry. By implementing these recommendations, educational institutions canwork towards creating more inclusive and diverse learning environments in CEM education andultimately contribute to a more equitable representation of women in the construction industry.Bibliography1. Archer, L., DeWitt, J., Osborne, J. F., Dillon, J. S., Wong, B., & Willis, B. (2013). ASPIRES Report: Young People’s Science and Career Aspirations, Age 10 –14. King's College London2. Amaratunga, D., Haigh, R., Shanmugam, M., Lee, A. J
also leverage the MBTI to tailor their teachingmethods to accommodate students' diverse needs, enriching the overall learning experience.Table 1: Myers-Briggs personality types and their descriptive codes. Personality Type Energy Information Decision Lifestyle A Main Trait ISTJ I S T J Inspector ISFJ I S F J Protector INFJ I N F J Counsellor INTJ I N T J Investigator ISTP I S T P Analyzer
Educationaddressed the U.S.'s projected aviation maintenance worker shortage of 800,000 people over thenext two decades from different perspectives.Course OrganizationThe CST course is designed for 16 weeks of classes to cover the materials established on thesyllabus. The CST course had five components 1. Lectures, 2. HODAs, 3. Writing assignments,4. Exams, and 5. Semester-long project. During the first part of the course, the students wereintroduced to concepts such as critical thinking, systems archetypes thinking, and mental modelsin the lectures. At the beginning of the semester, the students were introduced to the final projectrequirements, and teams were established with students from diverse cultural and educationalbackgrounds. During the first eight
document structure (narrative, large blocks of text, lists, etc.) used. 10. Mechanics • Standard English usage supported reader’s understanding of the response. (grammar, spelling, • No or minimal misspellings or punctuation errors. punctuation, etc.) • Word choices are correct; no or minimal subject/verb agreement errors or run-on used appropriately. sentences, etc. 11. Drawings used to • Comment “N/A” below if drawings were not used. illustrate, explain • Comment if drawing(s) used as primary explanations / responses. • Drawing(s) helped explain and support points made in text. • Drawing(s) were