prepare them for collegeeducation and careers in STEM.Although several initiatives are undertaken across several states to promote STEM literacy, therestill exists a lack of STEM graduates and skilled workforce that is necessary to run the economy.For example, a total of 1.8 million bachelor’s degrees were awarded in 2015–2016, of whichonly about 18% were in STEM fields. In particular, women received lower percentages ofbachelor’s degrees in STEM fields compared to men (36% vs. 54%), and this trend was observedacross all racial/ethnic groups (NCES, 2019). There is a growing demand for STEM skills acrossvarious sectors like computer science, aerospace, agriculture, clean energy, life sciences,advanced manufacturing, etc. The U.S. Bureau of Labor
to support their academic and social transition to college. To achieve thesegoals, the course curriculum emphasized career exploration, collaboration with peers, writtenreflections, and diversity and global learning opportunities.We identified with Yosso’s theory of “navigational capital,” which captures the knowledge andskills of underrepresented or underprivileged students that enable them to navigate institutionsand communities where a dominant culture prevails 27. Rather than taking a deficit approach (i.e.minority students need to be fixed), this study focuses on cultivating the strengths and assets offirst-generation and URM students to guide them toward success in engineering. In addition tosupporting these students, this course and
ReadinessAbstractColleges of Engineering have increasingly emphasized the importance of engineering studentsobtaining professional skills relating to global readiness. This paper describes progress in a cross-sectional, longitudinal study to examine the impact that a College of Engineering at a large, mid-Atlantic public institution has on students’ global readiness and related constructs. Data werecollected from first-year and senior undergraduate engineering students for two years (2012-2013and 2013-2014). Research questions examined: 1) previous international experiences of incomingstudents, 2) international experiences that undergraduates have during their academic careers, 3)students’ perceived value of global readiness, 4) activities students perceive to be
was developed andevaluated four attitudes toward sustainable engineering motivation: self-efficacy, value, affect,and negative attitudes. Self-efficacy related to a student’s level of confidence that theypossessed knowledge and skills related to sustainable engineering. Sustainable engineering Page 26.1449.3value items assessed both the intrinsic and extrinsic values of the students. Affect measuredstudent actions related to sustainable engineering. Finally, some of the items were negativelyworded, stating that the student believed that sustainability knowledge was not important orwould not be useful in their future career. While it was
years have rated ENGR 102 HS as “better than average” or “one of thebest” courses they have taken in high school (Rogers, J., Vezino, B., Baygents, J., & Goldberg, J,2014).Students in ENGR 102 HS are high school juniors and seniors who are at a critical point in theiracademic career. During this period, students turn their attention to college choice and considera subject in which to major. One of the key focuses of the course is to provide these students,who are standing at the edge of the PK-12 pipeline, with a broad view of engineering. A range ofhands-on activities and service learning opportunities are offered that demonstrate the diversetypes of work engineers do. While ENGR 102 HS teachers are offered training andencouragement in
have made in the course of their careers.Specifically, we ask: What do the pioneers feel have been their most important contributions and/or impacts in the field of engineering education? What can we learn about the significance of these contributions by examining them in terms of communities of practice?Data collectionSemi-structured interviews were conducted with 47 pioneers (in person, by telephone, or viaSkype). All interviews followed the same interview protocol, which included six requiredquestions and several optional follow-up prompts, allowing the interviewers to clarify or probemore deeply where appropriate. Most of the interviews (39 of the 47) were conducted bygraduate students or early-career faculty interested in
. Lorelle A. Meadows, Michigan Technological University Dr. Lorelle Meadowsjoined Michigan Technological University in 2014 where she is leading the creation of a new honors college uniquely committed to inclusion and equity, and eliminating barriers to high impact educational practices. Prior to joining Michigan Tech, Dr. Meadows was Assistant Dean of Aca- demic Programs in the College of Engineering at the University of Michigan.Her primary responsibility in that role was to assure the delivery of a curriculum that addressed college-wide educational objectives in order to prepare students for the careers of the 21st century. This engagement led to her development as an educational researcher and she now conducts
- ufacturing and embedded intelligence systems.Dr. Timothy J. Jacobs, Texas A&M University Professor in Department of Mechanical Engineering at Texas A&M University. Director of Interdisci- plinary Engineering for Undergraduate and Graduate Programs.Charles M. Wolf D.Eng, PE, BCEE, Texas A&M University Dr. Charles ”Chuck” Wolf is a Professor of Practice in the Zachry Department of Civil and Environmental Engineering at Texas A&M University and Director of Texas A&M’s Doctor of Engineering program. He has spent the majority of his career in progressive industry leadership positions from project engineering and management to client development and organizational leadership. He has led teams in the delivery of
that make it challenging to gain entry and to persist in the workplace [2, 3].Reports from students unable to obtain employment note that passing the technical interviews isone of the biggest issues they face in starting their career [3]. However, understanding the fullimpact of the hiring process in computing, and in particular, how it affects groups alreadyunderrepresented in computing (women, Black/African American, and Hispanic/Latinx workers),is important to creating a workplace of diverse talent [4–6]. Given the paucity of rigorousresearch surrounding the steps in the process, our motivation for this work was to create acomprehensive assessment of what hiring in computing looks like from the perspective of the jobseeker. In addition, we
perception of littleopportunities for advancement. Conversely, a positive workplace climate also helps to explainwhy women stay in the engineering workforce.3,5For women in engineering careers, those who persist were found in one study to possess highlevels of self efficacy, to describe themselves in terms of their identity as an engineer, and to bemotivated by the innovations and challenges afforded by engineering. This study also reasonedthat those who persist possess an ability to adapt and thrive “despite working in a male-dominated culture characterized by difficulties associated with the workplace, includingdiscrimination”. In contrast to this, women who left the engineering profession were “less likelyto recognize options in navigating the
Science Education. Her research earned her a 2016 National Science Foundation CAREER Award focused on characterizing latent diversity, which includes diverse attitudes, mindsets, and approaches to learning to understand engineering students’ identity development. She has won several awards for her research including the 2021 Journal of Civil Engineering Education Best Technical Paper, the 2021 Chemical Engineering Education William H. Corcoran Award, the 2022 American Educational Research Association Education in the Professions (Division I) 2021-2022 Outstanding Research Publication Award, and the 2023 American Institute of Chemical Engineers Award for Excellence in Engineering Education Research.Dr. Linda DeAngelo
Engineering and co-founder of the Integrative Learning Portfolio Lab in Career Education at Stanford University. She earned her undergraduate degree from UCLA and her PhD in Communication with a minor in Psychology from Stanford. Her scholarship is focused on engineering and entrepreneurship education, portfolio pedagogy, reflective practices, non-degree credentials, and reimagining how learners represent themselves through their professional online presence.Prof. George Toye Ph.D., P.E., is adjunct professor in Mechanical Engineering at Stanford University. While engaged in teaching project based engineering design thinking and innovations at the graduate level, he also contributes to research in engineering education
regional university located in south Texas, an area ofHispanic/Latinx majority population [2]. The continuation of this summer program after the endof the NSF grant period has not yet been decided. Engineering-oriented programs such as thiscan be important tools for enhancing undergraduate student success, as demonstrated by otherresearchers [3-5]. Numerous challenges in the post-secondary education environment exist forHispanic/Latinx students attending community colleges [6, 7], universities [8, 9], and in graduatestudy [10, 11]. Challenges that Hispanics/Latinx face in their academic careers include a poorsense of belonging at the university level, cultural support deficiencies, and challenges inovercoming secondary education academic
/Country) do you call home? 3 4. Do you have a particular engineering industry that you are already focused on? No big deal if not as we will explore career options during the semester. Just let me know. 5. When you begin your career (post-college), do you have a particular location around the planet where you would like to be working? 6. How well-versed are you in all things about this university? Grew up in a university family, or new to all the traditions and lore? Just trying to understand the audience here. 7. What are some concerns and fears that you have about the semester ahead? 8. What are some passions that you are bringing to your engineering career? 9. What level of
population and the education system [5]. Thus, low-income studentswill soon make up a more significant proportion of students in the nation’s schools and STEM-related careers [5]. Quality education must be made available for low-income students tostrengthen the workforce [5], [6]. Identity research, therefore, provides a lens to explain howstudents identify with a particular field and seek to improve their persistence [11], [12] as well asprovide a way to address system-level opportunities for change. The purpose of this researchstudy is to help educators develop a more inclusive engineering education environment andpromote cultural change that leads to positive and fulfilling college experiences for low-incomestudents. We believe that cultural
. Broadly categorized, students’understandings of success related to career preparation and opportunities—an expected theme forthose in technical degree programs, happiness or enjoyment in life, and living a life of purpose—what some might call “the good life.” Edwin’s response to our questions related to successreveals such understandings of success are not necessarily exclusive: “To me, [success] meansbeing able to fulfill your own personal purpose, while at the same time, enjoying it and making agood living out of it, I would say. That’d be success.”Though student participation in specific majors clearly shapes notions of success, students’insistence that the profitability of a future career is not the only—and sometimes not even theprimary
Advisor to the leadership at Sisters in STEM. Sreyoshi frequently collaborates on several National Science Foundation projects in the engineering education realm, researching engineering career trajectories, student motivation, and learning. Sreyoshi has been recognized as a Fellow at the Academy for Teaching Excellence at Virginia Tech (VTGrATE) and a Fellow at the Global Perspectives Program (GPP) and was inducted to the Yale Bouchet Honor Society during her time at Virginia Tech. She has also been honored as an Engaged Ad- vocate in 2022 and an Emerging Leader in Technology (New ELiTE) in 2021 by the Society of Women Engineers. Views expressed in this paper are the author’s own, and do not necessarily reflect those
the Department of Mechanical and Aerospace Engineering Department at Clarkson University. Doug specializes in the development and application of optical diagnostic techniques for the measurement of fluid flows. He has applied these techniques to study problems ranging from the unsteady aerodynamics of airfoils modeled after the flipper of the humpback whale, to the motion of particle laden flows in pipes, to the aerodynamics of luge sled. Doug has also worked with graduate students and faculty to learn about and improve teaching throughout his career. Doug is currently directing a professional development group at Clarkson University for junior faculty and is a member of the ASEE Taskforce on Faculty Teaching
also popularity used as a tool to increaseinterest in STEM education these days [1]. The gatherings of developers, designers,businesspeople, and other creatives are often brief occasions where they can work together tocreate fresh technology-based solutions. A hackathon is a computing technology focused eventwhich allows participants to become involved in building software-oriented projects. These typesof events also often include various activities such as workshops, mini-games, expert-panels,career fairs, and many more. Hackathons give its participants the opportunity to take theknowledge they have learned and apply it to creative ideas and applications whilesimultaneously encouraging collaboration with fellow participants. There are no
Colorado Department of Higher Education.Mrs. Amy Richardson, Virginia Tech Amy Richardson is a Graduate Research Assistant at Virginia Tech in the Department of Engineering Education along with an Assistant Professor of Engineering at Northern Virginia Community College. She has been teaching math and engineering courses at comDr. Michelle D. Klopfer, Virginia TechDr. Saundra Johnson Austin, Virginia Tech Dr. Saundra Johnson Austin has dedicated her career to promoting diversity, equity, inclusion, and belong- ing of elementary, middle, and high school students in science, technology, engineering, and mathematics (STEM) education and careers. Her research is grounded in the effective implementation of STEM cur- ricula
the leadership,communication, and cultural competencies increasingly required of today's high-tech workforce.The John Lof Leadership Academy (JLLA) is an innovative leadership program for engineeringgraduate students that was founded at the University of Connecticut in 2018 to create culturallycompetent visionaries in the field of engineering. John Lof Scholars develop their leadershipabilities through focused training, specialized workshops and seminars, and active learning. Runby graduate students from various departments based on a “for us, by us” program philosophy, theJLLA empowers its members to develop as leaders in their fields by aiming leadership trainingthrough the lens of each individual’s career and personal goals. Academy
itprovides a basis for building communities. I will return to the idea of creating an SELaware classroom in part 5 of the framework.Part 1: Intentional Grouping Almost every career-oriented role requires collaboration skills; setting studentsup for success using intentionally created student-selected groups is an essential startto any culturally aware STEM classroom. Intentional grouping involves several differenttools that help teachers ensure student success. Brown, et al, write: “When teachers aremindful of the important aspects of group dynamics, such as size, ability, gender, andrace, and plan teams accordingly, every student—particularly those from marginalizedbackgrounds—is set up for success [5].” Teachers need to consider the
Paper ID #37961Board 169: Making Families Aware of Engineering through the PublicLibrary (Work in Progress)Dr. Kelli Paul, Indiana University-Bloomington Dr. Kelli Paul is an Assistant Research Scientist at the Center for Research on Learning and Technology at Indiana University where her research focuses on the development of STEM interests, identity, and career aspirations in children and adolescents.Dr. Jungsun Kim, Indiana University-Bloomington Jungsun Kim, Ph.D. is a research scientist at Indiana University at Bloomington. Her research focuses on how students can consistently develop their talent throughout their
interest (e.g.,[26], [27]). This decline is particularly pronounced in middle-school girls (e.g., [24]). Given thatengineering is perceived as a career for people who are good at math and science (e.g., [28]) and thedocumented drop in math and science interest, middle school girls are at a critical tipping point wherefuture outreach may be ineffectual. Once the troops were selected, the research team attended individualtroop meetings to ask parents to grant permission for their child to participate in the study. The minorparticipants provided verbal assent to the study prior to the initial interview. It is important to note thattroop members were not required to participate in the study to take part in earning the engineering badge;however, most
STEMeducation with industry for innovation. The objective is to prepare learners for STEM careers and to connectindustry through academia. In higher education, the critical learning skills are necessary to STEM educationand degree completion. There are retention efforts provided for the curricular support program that scholarshave contribute to motivation and outcomes of STEM interdisciplinary degree completion. Our efforts tosupport pre-college STEM education includes an understanding of college readiness and the learningenvironment using project-based learning (PBL). Hands-on experiences are general found to be successfulwhen integrated using PBL methods with industry. According to recent study, both intrapersonal andinterpersonal skills in PBL has
“how reforms in engineering are taken up in identityproductions” [24, p. 278]. The work described in this current paper focuses on this intersectionbetween a change in pedagogy and students’ engineering identities.Recent research proposes both quantitative and qualitative ways to measure engineering identity.For example, Godwin developed a survey to measure engineering identity, with a focus on threeconstructs: recognition as an engineer, interest in engineering, and performance/competence inengineering [25]. Meyers et al. also used a survey to model engineering identity developmentemploying stage theory [26]. They found that male students, students further in their studies, andstudents with future career plans in engineering are more likely
, virtual summer camp,experiential learning, multidisciplinary engineering, hands-on, simulationLiterature ReviewThe popularity of STEM focused summer camps has increased as a result of investments inSTEM workforce development. Early exposure to STEM principles and concepts increasesinterest in and pursuit of STEM careers. (National Research Council, 2011) The need for suchprograms is amplified for underrepresented populations. (Mau & Li, 2018) Underrepresentedpopulations face barriers to STEM access that are self-perceived and institutional. (Grossman &Porche, 2014) Investigations measuring the impact of STEM summer enrichment programs onself-efficacy, interest in STEM careers, and STEM identity has increased during the last decade.The
-college, interdisciplinary engineering, virtual summer camp,experiential learning, multidisciplinary engineering, hands-on, simulationLiterature ReviewThe popularity of STEM focused summer camps has increased as a result of investments inSTEM workforce development. Early exposure to STEM principles and concepts increasesinterest in and pursuit of STEM careers. (National Research Council, 2011) The need for suchprograms is amplified for underrepresented populations. (Mau & Li, 2018) Underrepresentedpopulations face barriers to STEM access that are self-perceived and institutional. (Grossman &Porche, 2014) Investigations measuring the impact of STEM summer enrichment programs onself-efficacy, interest in STEM careers, and STEM identity has
Ph.D. and B.S. in Electrical Engineering from Howard University and a M.S. in Electrical Engineering from Cornell University. He is currently serving as professor and chairper- son of the Department of Electrical and Computer Engineering at one of the nation’s preeminent public urban research institutions, Morgan State University. His career spans over twenty-eight years of progres- sive scholarly experience in such areas as research administration/ implementation, pedagogical inno- vation, international collaboration, strategic planning, promoting community engagement and academic program development. He instructs courses in computer vision, computer graphics, electromagnetics and characterization of semiconductor
, the retention rate and graduation rate ofundergraduate students in STEM fields are typically low and there is room for furtherimprovement. The low retention and graduation rates may be due to not only the rigorouscurriculum of the STEM majors, but also economic and academic difficulties those studentsencounter. Financial support to students alone may not be sufficient to address the problems. The National Science Foundation (NSF) S-STEM scholarship program was established toencourage higher education institutions to develop academic activities to support undergraduatestudents in STEM fields to improve their retention and graduation rates, and further increasingtheir potential of career placement and graduate studies. Our university