Institute of Aeronautics and Astronautics Student Chapter at LTU, chair of the First Year Engineering Experience committee, chair for the LTU KEEN Course Modification Team, chair for the LTU Leadership Curriculum Committee, supervisor of the LTU Thermo-Fluids Laboratory, coordinator of the Certificate/Minor in Aeronautical Engineering, and faculty advisor of the LTU SAE Aero Design Team. Dr. Gerhart conducts workshops on active, collaborative, and problem-based learning, entrepreneurial mindset education, creative problem solving, and innovation. He is an author of a fluid mechanics textbook. c American Society for Engineering Education, 2018 Assessment of Fluid Power Modules
their website as shown in Figure 1. The entrepreneurial mindset plusengineering skillset has been used to develop educational outcomes for several engineeringcourses.The text highlighted in yellow are focused on the entrepreneurial skills and the ones with shadesof blue are focused on the technical skills (also in white background under the heading ‘design’).CoE has already incorporated elements of Active Collaborative Learning (ACL) and Problem –Based Learning (PBL) into its program curriculum with emphasis on the system engineeringprocess and system thinking for either the laboratory-centered or capstone courses [2] [21] [22].However, adding new Entrepreneurial-Minded Learning (EML) courses in an already packedundergraduate curriculum is a
which is a major, but littlerecognized, challenge for engineering education. The use of computer assisted learning toprovide the required knowledge is already being promoted as an alternative. Clearly, thereis no need for a lecture if the same material is available by alternative methods and can beat a time and paced to suit an individual. Considering the effectiveness of such onlinelearning as the only metric, as educators are wont to do, is foolish. What will increasinglydrive adoption of automated learning platforms at all but the most elite institutions iseffectiveness vs. cost [26]. If there is no need for lectures, and laboratory work can besimulated, what is the purpose of a university other than as an aid to social mobility? Auniversity
Computer Engineering (ECE) and was named the Roanoke Electric Steel Professor in 2016. Prior to joining VT, he was a professor of ECE at the University of New Mexico (UNM) from 1994 to 2013, and most recently the Interim Department Chair and the Endowed Chair Professor in Microelectronics there. Before 1994, Dr. Lester worked as an engineer for the General Electric Electronics Laboratory in Syracuse, New York for 6 years where he worked on transistors for mm-wave applications. There in 1986 he co-invented the first Pseudomorphic HEMT, a device that was later highlighted in the Guinness Book of World Records as the fastest transistor. By 1991 as a PhD student at Cornell, he researched and developed the first strained
(2015-2016) I have the privilege of being a Course Assistant for three classes at Stanford: (1) E14: Introduction to Solid Mechanics; (2) BIOE51: Anatomy for Bioengineers; (3) BIOE80: Introduction to Bioengineering and Engineering Living Matter. I also have pleasure of serving as the Safety and Operations Manager at the Volkswagen Automotive Innovation Laboratory, which includes managing the machine shop and teaching students how to use the machinery. In this role I am able to advise and educate students on design choices for their personal and research projects from ideation phases to functional products, with an emphasis on design and manufacturing techniques. c American Society for
the University of Notre Dame and Associate Professor of Me- chanical and Mechatronic Engineering at the National University of Colombia. Prof. Tovar received his B.S. in Mechanical Engineering and M.S. in Industrial Automation from the National University in 1995 and 2000, respectively. He earned his M.S. and Ph.D. in Mechanical Engineering from the University of Notre Dame in 2004 and 2005. Currently, Prof. Tovar is the director of the Engineering Design Research Laboratory at IUPUI and the faculty mentor for the IUPUI Robotics Club. His main research areas include biologically inspired optimization and multiscale design methods for materials and mechanical systems.Dr. Sohel Anwar, Indiana University-Purdue University
Engineering from Wright State University, in Day- ton, Ohio. Her experience with teaching first-year engineering students has led to research interests in curriculum development, student empowerment and the development of holistic engineers through the collaboration with engineering stakeholders.Prof. Amy Rachel Betz, Kansas State University Dr. Amy Betz is an Assistant Professor and the director of the Multiphase Microfluidics Laboratory at Kansas State University. She received her PhD from Columbia University and her Bachelor of Science in Mechanical Engineering from the George Washington University. Her research aims to acquire new fundamental understanding of phase-change processes. She is passionate about research
member of the SPE Health,Safety, Security, Environment, and Social Responsibility (HSSE-SR) Advisory Committee. Inthe course, phase behavior, density, viscosity, interfacial tension, and composition of oil, gas,and brine systems are discussed. Course curriculum includes laboratory measurements,interpretation of lab data for engineering applications, flash calculations with k-values andequation of state and an introduction to fluid property software. CSR had previously not beentaught in the course, as it focused on the technical curriculum. In Fall 2016, CSR was introducedto the class through one assignment in which students watched a video about Chevron’s AlderGas Field Project and answered questions about Chevron’s Health, Safety, Security
don’t work out the first time. This makes everysemester a teaching laboratory, where new ideas can be tried and tested. This makes everysemester a little different, and keeps the interest of the instructors as they work to continuouslyimprove their course.C. ConclusionThe amount of formative feedback provided by students as they reflected on their flippedlearning experience has provided formative data for the professors as they work to improve theECE1250 class as well as provided students with deeper insights into their own learningprocesses that helped them in this class and which they can take forward with them into futurecourses. The structure and expectations of the flipped learning classroom provided a frameworkfor students to follow as
government research lab (Los Alamos National Laboratory). He holds three USPTO patents (IP of Cisco Systems). In addition to a doctorate in Computer Science, Predrag Tosic holds three master’s degrees, two in math- ematical sciences and one in CS. Tosic has a considerable teaching and student research mentoring expe- rience. He has enjoyed working with students of a broad variety of ethnic, cultural and socio-economic backgrounds and at different types of academic institutions. He has been actively involved with IEEE – the Palouse Section and is currently President of the Section’s Computer Society. He is also an active member of ACM, ASEE and AMS.Dr. Julie Beeston, University of Idaho Dr. Julie Beeston has both a
integrates the engineeringsciences with the biomedical science and clinical practices.FEMME 9: Computer Coding: - designed to provide post-ninth grade girls with anintroduction to computer coding and computer engineering.Continued participation in FEMME allows girls to form relationships and feel they are part of acommunity. Research on girls in engineering has found that social support of this type isimportant if they are to persist [37, 91]. Through integrated STEM curriculum that focuses onapplications of engineering, as recommended in the Next Generation Science Standards (NGSS)[92], girls learn about the importance of engineering and how it relates to everyday life. The girlsalso visit research laboratories and manufacturing facilities where
Foundation (NSF) funded projects: Professional Formation of Engineers: Research Initiation in Engineering Formation (PFE: RIEF) - Using Digital Badging and Design Challenge Modules to Develop Professional Identity; Professional Formation of Engineers: REvolutionizing engineering and computer science Departments (IUSE PFE\RED) - Formation of Accomplished Chemical Engineers for Transform- ing Society. She is a member of the CBE department’s ABET and Undergraduate Curriculum Committee, as well as faculty advisor for several student societies. She is the instructor of several courses in the CBE curriculum including the Material and Energy Balances, junior laboratories and Capstone Design courses. She is associated with
professor of mechanical engineering at Tuskegee University, AL, USA. He is currently working as an assistant professor at the Department of Intelligent Systems and Robotics, Hal Marcus College of Science and Engineering, University of West Florida (UWF), Pensacola, FL, USA. At UWF, Dr. Rahman contributes to the Ph.D. program in Intelligent Systems and Robotics, and directs the Human-friendly and Interactive Robotics Laboratory (HIR Lab). His research and teaching interests include robotics, mechatronics, control systems, electro-mechanical design, human factors/ergonomics, engineering psychology, virtual reality, artificial intelligence, machine learning, CPS, IoT, computer vision, biomimetics and biomechanics with
teachers.Dr. Aaron W. Johnson, University of Michigan Aaron W. Johnson is a postdoctoral research fellow at the University of Michigan. He received his Ph.D. in Aeronautics and Astronautics from the Massachusetts Institute of Technology in 2014, after which he served as a postdoctoral research fellow at the Tufts University Center for Engineering Education and Outreach. Aaron also obtained a master’s degree from MIT in 2010 and a bachelor’s degree from the University of Michigan in 2008, both in aerospace engineering.Dr. Timothy G. Chambers, University of Michigan Dr. Chambers is the instructional laboratory supervisor and instructor for advanced lab courses in Mate- rials Science & Engineering at the University of
in the Department of Fire Protection Engineering where she oversees outreach and retention initiatives. She also holds an engineering education research assistantship that advances and engages her expertise in engineering education.Dr. Bruk T. Berhane, University of Maryland, College Park Dr. Bruk T. Berhane received his bachelor’s degree in electrical engineering from the University of Mary- land in 2003. He then completed a master’s degree in engineering management at George Washington University in 2007. In 2016, he earned a Ph.D. in the Minority and Urban Education Unit of the Col- lege of Education at the University of Maryland. Bruk worked at the Johns Hopkins University Applied Physics Laboratory, where he
. Camacho, "Using Focus Groups to Understand Military Veteran Students' Pathways in Engineering Education," in Proceedings of the ASEE Annual Conference, New Orleans, LA, 2016.[8] C. E. Brawner, C. Mobley, S. M. Lord, J. B. Main and M. M. Camacho, "Transitioning from Military Service to Engineering Education," in Proceedings of the IEEE EDUCON Conference, Athens, Greece, 2017.[9] N. Salzman, T. B. Welch, H. Subbaraman and C. H. G. Wright, "Using Veterans' Technical Skills in an Engineering Laboratory," in Proceedings of the ASEE Annual Conference, Salt Lake City, 2018.[10] ASVAB, "ASVAB Fact Sheet," [Online]. Available: http://official- asvab.com/docs/asvab_fact_sheet.pdf
conveyed through the text.Reddit Post.Unlike Wikipedia, Reddit’s content is not limited to a single genre and it is in many ways meantto be a space for commenting and discussing content posted directly to the platform as well asfound elsewhere on the Internet. One participant wrote an essay and posted it to a subreddit, orforum, on the PV solar industry and research. He sets out to inform redditors about importantaspects of solar cell manufacturing and in the process explaining his role as an intern in auniversity laboratory where he is mentored by scientists. He inserts himself directly into the textaffiliating himself with the scientific community which is a positioning that Wiki articles do notallow. He characterizes himself as a participant in
Sustainable Systems Program. He is Chief Science Officer of Fusion Coolant Systems. Professor Skerlos has gained national recognition and press for his research and teaching in the fields of technology policy and sustainable design. He has co-founded two successful start-up companies (Accuri Cytometers and Fusion Coolant Systems), co-founded BLUElab, served as Director of the Graduate Pro- gram in Mechanical Engineering (2009-2012), and served as associate and guest editor for four different academic journals. His Ph.D. students in the Environmental and Sustainable Technologies Laboratory have addressed sus- tainability challenges in the fields of systems design, technology selection, manufacturing, and water.Ms. Megan
in a meaningful way to create an enriching learning experience. Moreover,designing assessments that stretches students’ thought-process is critical to engineeringpedagogy. This is implemented in the course as structured threaded discussion forums, governedby instructors that provide thought-provoking guiding questions followed by peer discussion.This essay also explores the design and implementation of virtual laboratory sessionscomplementing the bi-weekly homework assignments and a final project. It describes theassessment design decisions, based on the overall course learning outcomes, taken to suit theonline learners. The aim of this essay is to inform, the community of asynchronous onlinecomputer engineering educators, of assessment
program evaluation, and coordinates the Research and Evaluation Laboratory (REL) in the College of Education at UTEP. He is an expert on educational research with an emphasis on quantitative methods and the application of univariate and multivariate statistical procedures, measurement issues across diverse populations, educational assessment, and eval- uation of educational programs. He has served on over 87 doctoral dissertation committees; published more than 45 refereed research articles; and presented at more than 100 international, national and re- gional research conferences. Some of his more general research areas of interest include teacher and student’s self-efficacy and motivation research, reading and
graduate level interns. The cohort has an average age of 27 years and 4.7 yearsof work experience and an average of 72% male/28% female, 75% US/25% international.The core course in leadership includes modules and labs to practice and attain mastery in each ofthe 14 leadership capabilities. Through the Challenge Project, the student’s workplace acts asan experiential laboratory to observe and use these capabilities in a real-world setting andthrough assignments deepen their understanding and appreciation of leadership.4 Research Objective and MethodsThe objective of this report is to assess the improvement of skills specifically addressed througha series of assignments and exercises in developing a personal and professional network.The
professionalcompetencies in comparison to studying in a conventional engineering curriculum.Wei Xue7 introduced a hands-on, project-based experiential learning module into a course onmicro-and nanotechnologies for mechanical engineering students. This module was combinedwith the existing theoretical course structure and the laboratory activities were designed tointegrate textbook theoretical principles with real fabrication and characterization processes. Thishands-on experience enabled the students to obtain a better comprehension of the classroomprinciples. Based upon student feedback obtained via surveys, it was learned that theintroduction of this experiential, design-oriented module was very effective in helping studentsunderstand concepts related to micro
and design philosophies, beams, slabs, columns, walls, footings) Geology; index properties and soil classifications; phase relations, air-water-solid; laboratory and field tests; effective stress, buoyancy; stability of retaining walls (e.g., active pressure/passive pressure); shear strength; bearing capacity, cohesive andGeotechnical 9 – 14 noncohesive; foundation types (e.g., spread footings, deepEngineering foundations, wall footings, mats); consolidation and differential
Professor and Chair of Materials Science and Engineering at Boise State University. Dr. Callahan received her Ph.D. in Materials Science, M.S. in Metallurgy, and B.S. in Chemical Engi- neering from the University of Connecticut. Her educational research interests include materials science & engineering, freshman engineering programs, math education, and retention and recruitment of STEM majors.Dr. Barry Dupen, Indiana University - Purdue University, Fort Wayne Dr. Dupen is an Associate Professor of Mechanical Engineering Technology at Indiana University – Pur- due University Fort Wayne (IPFW). He has nine years’ experience as a metallurgist, materials engineer, and materials laboratory manager in the automotive
Research Laboratory for Multifunctional Lightweight Structures”, funded by the Canadian Foundation for Innovation (Leader’s Opportunity Fund) and Ontario Research Fund. His research interests include Design and Development of Light-Weight Structures for aerospace, automotive, and nuclear applications, Multidisciplinary Design Optimization of Aerospace and Automotive systems, Multi-scale Simulation of Nano-structured Materials and Composites. He has supervised 18 PhDs, 65 Masters’, and 9 Post Doctoral Fellows. He has also published more than 230 papers, and 6 book chapters. He has been the recipient of many prestigious awards and recognitions such as the Research Fellow of Pratt and Whitney Canada and Fellow of the CSME