practice sustainability. Bielefeldt is also a licensed P.E. Professor Bielefeldt’s research interests in engineering education include service- learning, sustainable engineering, social responsibility, ethics, and diversity.Dr. Greg Rulifson P.E., Colorado School of Mines Greg currently teaches in Humanitarian Engineering at CSM. Greg earned his bachelor’s degree in Civil Engineering with a minor in Global Poverty and Practice from UC Berkeley where he acquired a passion for using engineering to facilitate developing communities’ capacity for success. He earned his master’s degree in Structural Engineering and Risk Analysis from Stanford University. His PhD work at CU Boulder focused on how student’s connections of
, ensuring a personalized match in research interests.The coordination team's efficacy is evident in the program's 100% placement rate last year,successfully pairing students with appropriate mentors and projects, reflecting a keenunderstanding of both student and faculty needs.A key aspect of the program is its dual focus on hands-on research and educational seminars.Students engage directly in real-world research under expert guidance, applying classroomtheories to practical scenarios, fostering innovation and inquiry. Concurrently, weekly seminarscover essential topics like research ethics, intellectual property rights, IRB and IACUCprotocols, and grant writing skills, and technology transfer.The program’s holistic structure develops not just
2014. He specializes in sustainable technology and policy making from a background in Science and Technology Studies from Rensselaer Polytechnic Institute, working on energy and environmental policy in New York State, and a former life in cellular biology.Dr. Rider W. Foley, University of Virginia Dr. Rider W. Foley is an assistant professor in the science, technology & society program in the De- partment of Engineering and Society at the University of Virginia. He is the principal investigator at University of Virginia on the ’4C Project’ on Cultivating Cultures of Ethical STEM education with col- leagues from Notre Dame, Xavier University and St. Mary’s College. He is also the co-leader of the ’Nano and
Shaffer, Lipscomb UniversityDr. Elizabeth Buchanan, Marshfield Clinic Research Institute Elizabeth Buchanan PhD is Director of the Office of Research Support Services and Senior Research Scientist at the Marshfield Clinic Research Institute. For over twenty years, Elizabeth’s scholarship has focused on research ethics, compliance and regulations, specifically around Internet, social media, and big data research. In these areas, she has written guidelines for IRBs/REBs, contributed to the Secretary’s Advisory Committee to the Office of Human Research Protections (SACHRP) in 2013, and was co-author to the 2012 Association of Internet Researchers Ethics Guidelines. Elizabeth serves as faculty at the Fordham University’s
work in Organizational Communication at Purdue. Her primary research in- terests include collaboration and innovation; negotiations of expertise in team-based organizational work; team processes and decision-making; ethical reasoning, constitution, and processes; engineering design; technology and its impacts on organizational and personal life; and network analysis. c American Society for Engineering Education, 2019 Social Network Analysis of In-Group Biases with Engineering Project TeamsAbstractThis study explores the relationship between friendships of engineering students on project teamswithin a classroom setting and how their perceptions of each other
while also addressing the systemicinequalities in the STEM ecosystem.Theoretical FrameworkThe theoretical framework that underlies this research integrates several concepts and theories thatare necessary to contextualize the challenges faced by racially underrepresented students in STEMentrepreneurship. We place a special focus on concepts that shed light on the motivating factorsthat would lead a STEM entrepreneur to take interest in using their knowledge to address racialinequities and create positive social change in their communities.The central concept in this framework is Equity Ethics, developed and created by Dr. Ebony O.McGee. Equity Ethics is described as one’s principled concern for racial and social justice as wellas the well-being
students’ understanding. Ethics, for example, is often taught in civilengineering through the use of case studies. Further, case studies offer an opportunity forinterdisciplinary discussions centered on human dignity and justice goals [8] and likewisedevelop empathy for the users impacted by the project. Empathy is increasingly beingrecognized for the central role it may play in connecting crucial inter- and intrapersonal skillswith enhanced abilities to understand and productively work in multidisciplinary environmentswith diverse stakeholder groups [9]. Finally, some professors may not feel comfortable directlydiscussing race and related topics within an otherwise technical classroom environment; casestudies allow the emphasis to be taken off of
the pastfew years at the University of Canterbury in New Zealand. The course is required for students inthe civil engineering and natural resources engineering bachelors’ degree programs. The coursewas developed based on input from the Institution of Professional Engineers New Zealand(IPENZ). Unlike in the U.S., an engineering degree in New Zealand does not require asubstantial general education component. Course topics include engineering history,investigation of failure cases, teamwork, ethics, risk management, and engineering today andtomorrow. This paper details the development of the course to date and its associatedassessments, and discusses lessons learnt in teaching professional engineering skills in thisformat. It also compares
twoproblematic ideologies at work in engineering education: an over-reliance on Outcomes-BasedEducation (OBE) and an emphasis on “evidence-based” research and practice, where “evidence”is narrowly defined following the medical model of randomized controlled trials (RCTs), nearlyimpossible to execute validly in educational settings. The changes remove or weakenrequirements for educational breadth, including global and social context, engineering ethics, andlifelong learning.One of the stated rationales for these changes is that some outcomes are difficult to assess. To thecontrary, the engineering education community has invested a great deal of time and effortinnovating assessment methods to create increasingly valid, concise, and easy to implement
-structured education that we currently utilize and wereprimarily known as peacetime builders who relied on an apprentice-based, hands-on, tinkeringmodel of training up until the late 18th Century [2, 3]. While present-day civil engineers are stillresponsible for such socially-responsible domains, civil engineering now exists as a professionthat is acquired through a formal education process that is deeply rooted in and influenced by thehistorical advancements of the discipline [3-10].Today, the education of undergraduate civil engineering students is largely shaped by thebehaviors, practices, and knowledge that have been established and are valued by the discipline’sgoverning professional societies. Topics such as ethics [11, 12]; design regulations
particular ethical standpoint toward the content of religiosity,which may comfort the decision-maker and assist the decision-making process [34]. Personalspiritual beliefs affect the behavior and strategic decisions of top-level leaders and such beliefsaffect the measurement and adjustment of the spiritual climate of the leaders’ organizations.Other researchers have claimed that spiritual and religious beliefs influence leadership style inthe way leaders develop new skills and provide information relied upon in the workplace[27][34]. As cultures vary in different Middle Eastern countries, leaders of the region may interpretthe company’s business practices and frame personal reactions according to the individual’scultural background and
material and in-class activities, a cognitivist approach. The final four semesters (n=152) were structured with aflipped classroom approach. Students accessed course material through weekly online modulesand class time was spent in reflective discussion and experiences based on the material offeredonline, a constructivist approach. The survey included 55 items that covered seven sub-scales:understanding of ethical issues, global awareness (world view), communication skills,organization/leadership skills, self-knowledge, creativity, and teamwork. Only student paired(pre and post) data were used in the analyses in this study. Most survey items had a significantincrease from pre to post course survey response in the desired direction. To evaluate
in ResearcherReflexivity, Adhering to Research Ethics, Framing the Research Problem and Questions,Identifying a Critical Framework, Conducting the Literature Review, Choosing ResearchMethods, Engaging with Participants, Crafting Instrumentation and Collecting Data, Analyzingand Interpreting Data, and Reporting on Research.After analyzing 12 standards bodies from seven countries and several dozen research articles[12–23], the working group created guidelines for each of the major areas. For example, Figure 2shows the resultant critical framework guidelines resulting from the analysis.4 ReflectionThrough our analysis, the working group merged valuable standards offering insights, guidance,and concrete examples for conducting education research
establishment of the Global Forum on Nuclear Education, Science, Technology, and Policy. Aditi holds undergraduate and doctoral degrees in Nuclear Science and Engineering from MIT. Her work, authored for academic as well as policymaking audiences, has been published in Nuclear Engineering and Design, Nature, Nuclear Technology, Design Studies, Journal of Mechanical Design, Issues in Science and Technology, Bulletin of the Atomic Scientists, and Inkstick. Aditi enjoys hiking with her dog, reading speculative fiction, and experimenting in the kitchen.Dr. Katie Snyder, University of Michigan Dr. Snyder is a lecturer for the Program in Technical Communication at the University of Michigan. She teaches design, ethics, and
) teachundergraduate students, (2) administer a degree program (i.e., Department Chairs), (3) serveas a top-level administrator over all engineering degree programs (i.e., Deans), and (4) workprofessionally in engineering. Survey items address areas including instructional strategies,instructional technologies, assessment strategies, curricula, evaluation of teaching, andpreparation of graduates. With over 2100 respondents, these survey results can informconversations about the future of ECE education. This paper focuses on responses from theover 600 academic respondents. When asked about teaching and assessing problem solving,moral/ethical reasoning, and design, respondents were most likely to teach problem solvingand design. This suggests that ethics may
may have heard of frequently, may even fear violating, butmany students fail to integrate the underlying values and purposes of abiding by academicintegrity within their own lives. The debate over whether academic dishonesty is on the rise orwhether technology has altered the way that violations appear is ongoing; however, what isimperative is that engineering educators begin to work to integrate this crucial aspect of one’seducation into the objectives of their courses. Students need to learn that academic honesty is acritical part of their educational endeavors and that their future work as an engineer is dependentupon the professional ethics that they must uphold.There are many types of academic integrity violations, ranging from minor to
has over 30 years’ experience in engineering practice and education, including industrial experience at the Tennessee Valley Authority and the US Army Space and Missile Defense Command. Her research inter- ests include Engineering Ethics, Image and Data Fusion, Automatic Target Recognition, Bioinformatics and issues of under-representation in STEM fields. She is a former member of the ABET Engineering Ac- creditation Commission, and is on the board of the ASEE Ethics Division and the Women in Engineering Division. c American Society for Engineering Education, 2020 Can ABET Assessment Really Be This Simple?AbstractWith the hard roll-out of ABET’s new outcomes 1-7 in the 2019
educators will be “restricted” professionals [1]. Some countries however, such as the UK and Sweden, dorequire intending university faculty to have training in teaching and learning. It can be argued that such training servesas the teaching equivalent of the PE; the PEE, as it were.All of this implies a second characteristic of a profession, that is, that it possesses a codified body of knowledge andexpertise. A third characteristic of a profession is that it has agreed standards of behavior, and a set of ethical standardsthat members abide by or face sanctions for violating.This paper argues that, certifications or degrees aside, university teaching should be a professional activity and effectivetraining should be required. If engineering
as a member of an interdisciplinary team. 21. Self Directed Learning Demonstrate the ability for self-directed learning. 22. Ethical Responsibility Apply standard of professional and ethical responsibility to determine an appropriate course of action. Page 26.1465.4Department outcomes and identifies eight specific outcomes that are being used to assessprofession skills. Course embedded indicators on tests, assignments, and projects are used toevaluate each of the 22 CEE Department outcomes. Results from embedded indicators and othermeasures are evaluated to ensure overall desired performance
Paper ID #42586Engagement in Practice: A Road Map for Academia and Non-Profit CollaborationKerrie Danielle Hooper, Florida International University Kerrie Hooper is currently an Engineering and Computing Education Ph.D. student at Florida International University. She obtained her Bachelor of Science in Computer Science from the University of Guyana in 2019 and then worked for two years in the industry as a Data Analyst & Systems Administrator, before pursuing her doctoral degree. Her research interests are in AI ethics, responsible technology in education, women’s careers in computing, and arts-based approach to STEM
,feeding to their fear about saying the wrong thing.The disconnect between the two groups often results in explicitly marginalizing classroomenvironments, i.e., environments where students feel unwelcome from blatantly marginalizing ordiscriminatory behaviors [1]. The data demonstrates that faculty are interested in developingimplicitly inclusive classrooms but fear that their lack of expertise on these topics will lead tofailure and having a negative impact on students. However, students voiced strong support andinterest in having faculty discuss and teach about inclusivity and ethics in their engineeringclassrooms. To create implicitly inclusive environments, faculty are encouraged to acknowledgeand discuss such topics in their classes and
Paper ID #214362018 CoNECD - The Collaborative Network for Engineering and ComputingDiversity Conference: Crystal City, Virginia Apr 29Infusing inclusion, diversity & social justice into the undergraduate Com-puter Science curriculum at Boise State UniversityProf. Donald Winiecki PhD, Boise State University Don Winiecki, Ed.D., Ph.D. is the ‘Professor of Ethics & Morality in Professional Practice‘ in the Boise State University, College of Engineering. He teaches undergraduate and graduate courses in ‘Foundational Values‘ and ‘Professional Ethics‘ in the Computer Science Department and Organizational Performance &
communicate with people from different backgrounds. 5.98 1.00 Q1_2 articulate opinions on issues related to diversity 5.53 1.20 Q1_3 learn about race/ethnicity in an engineering classroom 5.80 1.36 Q1_4 learn about gender issues in an engineering classroom 5.69 1.39 Q1_5 learn about oppression and discrimination in an engineering classroom 5.63 1.44 Q1_6 learn about ethics in an engineering classroom 6.18 1.05 Q1_7 learn about gender in an engineering classroom 5.68 1.44 Q1_8 learn about sexual orientation in an engineering classroom
increased flexibility in thinking and an enhanced ability to comprehend needs inrelation to ecology, the environment, and providing agency and transparency in interactions withtechnology, particularly in an age of complex artificial intelligence (AI) systems. Thisnecessitates a deeper understanding and application of empathy and knowledge of globalcomplexities. It emphasizes flexible thinking to anticipate and access the ethical, economic,political, and health impacts of the proposed designs, technology, and solutions that students willengineer. These implications also encompass the broader health and addiction impacts oftechnology, as well as its effects on the social and the ecological fabric [10].The challenges confronting engineering include
Aeronautical University Jeff Brown is a professor of civil engineering at Embry-Riddle Aeronautical University in Daytona Beach, FL. His research interests include ethics and professional formation in engineering education, service learning, and structural health monitoring of reinforced concrete structures. Dr. Brown received his PhD in structural engineering from the University of Florida in 2005.Joseph Roland Keebler, Embry-Riddle Aeronautical UniversityJenna Korentsides, Embry-Riddle Aeronautical University Jenna Korentsides is a Ph.D. student in the Human Factors department at Embry-Riddle Aeronautical University in Daytona Beach, FL. Jenna works under the advisement of Dr. Joseph R. Keebler in the Small Teams Analog
courses and explore opportunities for scaling up this project. In this paper, weexplore gaps in existing STEM curricula that demonstrate the need for such a course, describe outcomesof the workshop, outline essential elements of a course effectively introducing STEM students to thistopic (including historical and political context, moral and ethical frameworks, lived experience, humanrights principles, and technical and analytical skills, as well as suggested teaching strategies), and presentour own approaches, through the course we are currently piloting at Boston University called EngineeringApproaches for Refugee Health, in aiming to create a course that not only instills in students a long-termdesire to engage with the issue of forced
by AI by studying software agents, problem solving bysearching, various ways to represent knowledge, and methods of learning. Additionally, thiscourse will discuss both the ethics and risks associated with the fields of AI. Topics coveredduring the course fall into 4 major categories: (1) Knowledge, Reasoning, Planning, andUncertain Knowledge, (2) Learning and Philosophical Foundations, (3) Communicating,Perceiving, and Acting, and (4) Ethics and Risks. Previously, the authors have used the “flipped”classroom concept in courses. The flipped classroom, when mastered and done well, has beendemonstrated to be beneficial to the students’ ability to learn material [1]. One of the goals forthis project is for students to help create a repository
the ethical and policy implications of thetechnologies they review. The Grand Challenges provides a useful “anchor” to help studentsapproach engineering through awareness of ecosystems, sustainable development, resourcemanagement and appropriateness of technology for more holistic solutions. Such anunderstanding can help students become better decision-makers as they gain appreciation for thenon-technical issues that affect engineering. Communication skills are also furthered throughfocusing on impact and consequences of technology (or the lack thereof). Students gainawareness of their role as engineers and the need for responsible dissemination of information toguide choices that affect the quality of life for all.IntroductionThe National
inclusion.Dr. Kendall Roark, Purdue University at West Lafayette Kendall Roark is an applied cultural anthropologist who engages in ethnographic fieldwork and anthrode- sign projects in Canada and the United States. Her research and teaching interests focus on participatory and speculative design, queer and feminist technoscience studies, and data ethics. Dr. Roark is the co- founder and faculty lead for the Critical Data Studies Collective at Purdue University.Brent T. Ladd, Center for Science of Information, Purdue University Brent Ladd serves as Director of Education (and Interim Director of Diversity) for the Center for Science of Information NSF Science and Technology Center based at Purdue University. His education
Ethics Institute and the Leonhard Center for Enhancement of Engineering Education—to facilitate exchange and collaboration between philosophers and engineers. Prior to joining Penn State, he was a postdoctoral research fellow at the Science History Institute working on the history of engineering ethics education. Shih earned his PhD and MS in science and technology studies (STS) from Virginia Tech. He also has a graduate certificate in engineering education (ENGE) from Virginia Tech and a Bachelor of Science in electrical engineering from National Taiwan University. ©American Society for Engineering Education, 2024 Generative Artificial Intelligence (GAI) Assisted Learning: Pushing the